
Department of Mathematics and Computer Science
University of Southern Denmark, Odense

November 28, 2024
Marco Chiarandini

DM587 — Scientific Programming

Sheet 5, Fall 2024

Exercises originally formulated by Daniel Merkel, solutions originally prepared by Robert Ras-

mussen, former teacher and teaching assistant of this course.

Exercise 1

(1) Extract the carbon backbone

Draw as a graph:

Infer edge-weight matrix

0 1 ∞ ∞ ∞ ∞ ∞
1 0 1 ∞ ∞ ∞ ∞
∞ 1 0 1 ∞ ∞ 1
∞ ∞ 1 0 1 1 ∞
∞ ∞ ∞ 1 0 ∞ ∞
∞ ∞ ∞ 1 ∞ 0 ∞
∞ ∞ 1 ∞ ∞ ∞ 0

(2) Compute distance matrix (to speed up we use repeated squaring)

W 2 = W ⊙W =

0 1 2 ∞ ∞ ∞ ∞
1 0 1 2 ∞ ∞ 2
2 1 0 1 2 2 1
∞ 2 1 0 1 1 2
∞ ∞ 2 1 0 2 ∞
∞ ∞ 2 1 2 0 ∞
∞ 2 1 2 ∞ ∞ 0

Page 1

DM587 – Scientific Programming

W 4 = W 2 ⊙W 2 =

0 1 2 3 4 4 3
1 0 1 2 3 3 2
2 1 0 1 2 2 1
3 2 1 0 1 1 2
4 3 2 1 0 2 3
4 3 2 1 2 0 3
3 2 1 2 3 3 0

We could continue, but the longest path in the graph is of length 4 so W 4 = W 5 =

Thus, D = W 4.

(3) The wiener index is

W (G) =
1

2

n∑
i=1

n∑
j=1

Dij = 46

(the sum of all entries in the upper triangle of D)

(4) Looking at the upper (or lower) triangular part of the distance matrix and count the occur-

rences of 3, we find the number of shortest paths of length 3.

There are 6 shortest paths of length 3.

(5) The value of p0 is

p0 = n− 3 = 4

and the value of w0 is

w0 =
1

6
(n+ 1)n(n− 1) =

1

6
· 8 · 7 · 6 = 56

where n = 7 (number of carbon atoms/vertices).

(6) The value of t0 is

t0 = 745.42 · log10(n+ 4.4)− 689.4 = 98.44

The value of tB (estimated boiling point) is

tB = t0 −
(
98

n2
· (w0 −W (G)) + 5.5 · (p0 − p)

)
= 89.44◦C

(again, n = 7 (number of carbon atoms/vertices))

The real boiling point is 89.7◦C according to a wikipedia search, ie. it is fairly close to the

predicted value.

(7) The worst case performance for finding the distance matrix based on repeated squaring is

O(n3 log n). Each modified matrix-matrix multiplication take O(n3) time and we perform

log2 n matrix-matrix multiplications.

(8) You could use the Floyd-Warshall algorithm (solves all-pairs shortest distance problem) with

asymptotic worst case performance O(n3).

Remark: Knowledge about the Floyd-Warshall algorithm comes from course DM507, Algo-

rithms and Data Structures.

Page 2

DM587 – Scientific Programming

Exercise 2

(1) They can be used to obtain updated coordinates when (x1, y1), (x2, y2), . . . , (xn, yn) are

represented as vectors in Rn:
x1

x2

...
xn

y1
y2
...
yn

The update computes midpoints between connected points.

(2) Only M3 is invertible (see [2, p. 25] or next sub-exercises)

(3) The determinants are

det(M3) =

∣∣∣∣∣∣
1 1 0
0 1 1
1 0 1

∣∣∣∣∣∣ = 0.25 (invertible)

and

det(M4) =

∣∣∣∣∣∣∣∣
1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

∣∣∣∣∣∣∣∣ = 0 (not invertible)

(4) • M3: Yes - follows from Theorem 4.8.4 [1, p. 228].

• M4: No - follows from Theorem 4.8.4 [1, p. 228].

Note: Since the 4th column is a linear combination of the others
0
0
1
1

 =

1
0
0
1

−

1
1
0
0

+

0
1
1
0

(see Theorem 4.3.1 [1, p. 189])

(5) An informal proof goes as follows:

• Do cofactor expansion on first column and realize that only the terms involving the first

row first column and last row first column matters. When computing the determinant

of the submatrix, for the term involving first row first column we are looking at a

triangular matrix. Likewise, we are looking at a triangular matrix when removing the

last row first column.

• Observe these sub-(triangular)-matrices always have non-zero values of the diagonal

(namely, 1
2 as each entry), so they determinant are non-zero and are the same for both

submatrices.

• When n is even, the two terms cancel each other out given a determinant of 0 (Mn

is not invertible). When n is odd, the two terms don’t cancel each other out (Mn is

invertible).

(6) Drawing an equilateral triangle with points (xk
1 , y

k
1), (x

k
2 , y

k
2), and (xk

3 , y
k
3), we can find unique

points (xk−1
1 , yk−1

1), (xk−1
2 , yk−1

2), (xk−1
3 , yk−1

3) s.t. xk = M3 · xk−1 and yk = M3 · yk−1.

Page 3

DM587 – Scientific Programming

Why? Since M3 is invertible we know there are unique solutions to xk = M3 · xk−1 and

yk = M3 · yk−1, namely, xk−1 = M−1
3 · xk and yk−1 = M−1

3 · yk. See an illustration of the

situation in Figure (6).

(7) Drawing a square with points (xk
1 , y

k
1), (x

k
2 , y

k
2), (x

k
3 , y

k
3), and (xk

4 , y
k
4), we can find infinitely

many points (xk−1
1 , yk−1

1), (xk−1
2 , yk−1

2), (xk−1
3 , yk−1

3), and (xk−1
4 , yk−1

4) s.t. xk = M4 · xk−1

and yk = M4 · yk−1.

Why? Solving the systems xk = M4 · xk−1 and yk = M4 · yk−1 can yield zero solutions,

one unique solution, or infinitely many solutions for xk−1 and yk−1. Below we show two

different set of four points leading to a square when the associated vectors xk−1 and yk−1

are multiplied by M4. Therefore, there are infinitely many solutions.

Exercise 3

(1) The average of v is
0 + 3 + (−1) + 11 + (−3)

5
= 2

Page 4

DM587 – Scientific Programming

and thus v̄ is

v̄ =

2
2
2
2
2

The value of w is

w = v − v̄ = v̄ =

0
3
−1
11
−3

−

2
2
2
2
2

 =

−2
1
−3
9
−5

Remark: The mean of w is 0. To prove that the mean of w = v − v, where v is a vector

where each entry is the mean of all values vi, is 0 for an arbitrary vector v ∈ Rn, do the

following. Let m be the average of the entries of v. Observe the mean of the entries of w is

w1 + w2 + · · ·+ wn

n
=

(v1 −m) + (v2 −m) + · · ·+ (vn −m)

n

=
(v1 + v2 + · · ·+ vn)− n ·m

n

=
(v1 + v2 + · · ·+ vn)

n
− n ·m

n
= m−m

= 0

(2) Normalizing w gives

w

||w||2
=

1√
(−2)2 + 12 + (−3)2 + 92 + (−5)2

−2
1
−3
9
−5

 =
1√
120

−2
1
−3
9
−5

 =

− 2√

120
1√
120

− 3√
120
9√
120

− 5√
120

(3) The lenght of w

||w||2 is

∣∣∣∣∣∣∣∣ w

||w||2

∣∣∣∣∣∣∣∣ =
√(

− 2√
120

)2

+

(
1√
120

)2

+

(
− 3√

120

)2

+

(
9√
120

)2

+

(
− 5√

120

)2

= 1

Exercise 4

(1) Just do it!

In [1]: 0.1+0.2

Out [1]: 0.30000000000000004

See https://docs.python.org/3.6/tutorial/floatingpoint.html and [3, p. 377] for an

explanation.

(2) (a) In all cases we except the same result mathematically, namely, that c = a is true.

Page 5

https://docs.python.org/3.6/tutorial/floatingpoint.html

DM587 – Scientific Programming

(b) I guess all of them.

The obvious problem with (a) is a at some point will become closer to the representation

of 0. When this occurs, no matter how many times you multiply a by 2, a will always

remain 0.

In (b), adding 1 after each division is introduced; thereby, the 0-problem from (a) is

removed. However, at some point a will get to close to 2; thus, the second for-loop just

subtracts 1 from 2 and multiplies the result by 2 obtaining 2 again.

In (c), adding 10000 after each division also removes the 0-problem from (a), however,

a similar problem to (b) is that a becomes increasingly close to 20000. If a becomes

20000, then subtracting 10000 from 20000 and multiplying by 2 just gives 20000 again.

(c) In (a) the value of c should be high since it should have been exposed to a lot of division.

In (b), the value of c should also be relatively high (however less than in (a)).

In (c), the value of c should be around the same as for (b) (maybe a bit less) before

creating a numerical issue.

(d) Since as observed in [2, p. 26-27], numerical issues occur in our approach to the ”From

Random Polygon to Ellipse” problem, and therefore we should be aware of it.

Page 6

DM587 – Scientific Programming

References

[1] Howard Anton and Chris Rorres. Elementary Linear Algebra. Springer, 11 edition, 2010.

[2] Daniel Merkle. From random polygon to ellipse. URL https://dm587.github.io/assets/

dm587-RandomPolygon.pdf, 2020.

[3] William Stallings. Computer Organization and Architecture: Designing for Performance. Pear-

son, 10 edition, 2016.

Page 7

https://dm587.github.io/assets/dm587-RandomPolygon.pdf
https://dm587.github.io/assets/dm587-RandomPolygon.pdf

