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In solving large scale-linear systems, Gaussian elimination and Gauss-Jordan elimination are not
suitable because of:

• computer roundoff errors

• memory usage

• speed

Computer methods are based on LU decomposition.
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• flop counts

• vector-vector operations

• matrix-vector product

• matrix-matrix product
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x = m · βe ; l ≤ e ≤ u

with mantissa m, base β, and exponent e

m = ±d0.d1d2 · · · dt , 0 ≤ di < β

β t l u

IEEE SP 2 23 -126 127

IEEE DP 2 52 -1022 1023

Cray 2 48 -16383 16384

HP calculator 10 12 -499 499

IBM mainframe 16 6 -64 63
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floating-point operation (flop)

• one floating-point addition, subtraction, multiplication, or division
• other common definition: one multiplication followed by one addition

flop counts of matrix algorithm

• total number of flops is typically a polynomial of the problem dimensions
• usually simplified by ignoring lower-order terms

applications

• a simple, machine-independent measure of algorithm complexity
• not an accurate predictor of computation time on modern computers
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• inner product of two n-vectors

xTy = x1y1 + x2y2 + . . .+ xnyn

n multiplications and n − 1 additions = 2n flops (2n if n ≫ 1)

• addition or subtraction of n-vectors: n flops

• scalar multiplication of n-vector : n flops
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matrix-vector product with m × n-matrix A:

y = Ax

m elements in y ; each element requires an inner product of length n:

(2n − 1)m flops

approximately 2mn for large n special cases

• m = n, A diagonal: n flops

• m = n, A lower triangular: n(n + 1) flops

• A very sparse (lots of zero coefficients): #flops ≪ 2mn
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product of m × n-matrix A and n × p-matrix B:

C = AB

mp elements in C ; each element requires an inner product of length n:

mp(2n − 1)flops

approximately 2mnp for large n.
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• factor-solve method

• LU factorization

• solving Ax = b with A nonsingular

• the inverse of a nonsingular matrix

• LU factorization algorithm

• effect of rounding error

• sparse LU factorization
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Definition (Triangular Matrices)

An n × n matrix is said to be upper triangular if aij = 0 for i > j and lower triangular if aij = 0 for
i < j . Also A is said to be triangular if it is either upper triangular or lower triangular.

Example:



3 0 0
2 1 0
1 4 3







3 5 1
0 1 3
0 0 7




Definition (Diagonal Matrices)

An n × n matrix is diagonal if aij = 0 whenever i ̸= j .

Example:



1 0 0
0 1 0
0 0 3
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Multiple right-hand sides

two equations with the same matrix but different right-hand sides

Ax = b, Ax̃ = b̃

• factor A once (f flops)

• solve with right-hand side b (s flops)

• solve with right-hand side b̃ (s flops)

cost: f + 2s instead of 2(f + s) if we solve second equation from scratch

conclusion: if f ≫ s, we can solve the two equations at the cost of one

LU factorization 7-4



LU factorization

LU factorization without pivoting

A = LU

• L unit lower triangular, U upper triangular

• does not always exist (even if A is nonsingular)

LU factorization (with row pivoting)

A = PLU

• P permutation matrix, L unit lower triangular, U upper triangular

• exists if and only if A is nonsingular (see later)

cost: (2/3)n3 if A has order n

LU factorization 7-5



Solving linear equations by LU factorization

solve Ax = b with A nonsingular of order n

factor-solve method using LU factorization

1. factor A as A = PLU ((2/3)n3 flops)

2. solve (PLU)x = b in three steps

• permutation: z1 = PT b (0 flops)
• forward substitution: solve Lz2 = z1 (n2 flops)
• back substitution: solve Ux = z2 (n2 flops)

total cost: (2/3)n3 + 2n2 flops, or roughly (2/3)n3

this is the standard method for solving Ax = b

LU factorization 7-6



Multiple right-hand sides

two equations with the same matrix A (nonsingular and n× n):

Ax = b, Ax̃ = b̃

• factor A once

• forward/back substitution to get x

• forward/back substitution to get x̃

cost: (2/3)n3 + 4n2 or roughly (2/3)n3

exercise: propose an efficient method for solving

Ax = b, AT x̃ = b̃

LU factorization 7-7



Inverse of a nonsingular matrix

suppose A is nonsingular of order n, with LU factorization

A = PLU

• inverse from LU factorization

A−1 = (PLU)−1 = U−1L−1PT

• gives interpretation of solve step: evaluate

x = A−1b = U−1L−1PT b

in three steps

z1 = PT b, z2 = L−1z1, x = U−1z2

LU factorization 7-8



Computing the inverse

solve AX = I by solving n equations

AX1 = e1, AX2 = e2, . . . , AXn = en

Xi is the ith column of X; ei is the ith unit vector of size n

• one LU factorization of A: 2n3/3 flops

• n solve steps: 2n3 flops

total: (8/3)n3 flops

conclusion: do not solve Ax = b by multiplying A−1 with b

LU factorization 7-9



LU factorization without pivoting

partition A, L, U as block matrices:

A =

[
a11 A12

A21 A22

]
, L =

[
1 0

L21 L22

]
, U =

[
u11 U12

0 U22

]

• a11 and u11 are scalars

• L22 unit lower-triangular, U22 upper triangular of order n− 1

determine L and U from A = LU , i.e.,

[
a11 A12

A21 A22

]
=

[
1 0

L21 L22

] [
u11 U12

0 U22

]

=

[
u11 U12

u11L21 L21U12 + L22U22

]
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recursive algorithm:

• determine first row of U and first column of L

u11 = a11, U12 = A12, L21 = (1/a11)A21

• factor the (n− 1)× (n− 1)-matrix A22 − L21U12 as

A22 − L21U12 = L22U22

this is an LU factorization (without pivoting) of order n− 1

cost: (2/3)n3 flops (no proof)

LU factorization 7-11



Example

LU factorization (without pivoting) of

A =




8 2 9
4 9 4
6 7 9




write as A = LU with L unit lower triangular, U upper triangular

A =




8 2 9
4 9 4
6 7 9


 =




1 0 0
l21 1 0
l31 l32 1






u11 u12 u13

0 u22 u23

0 0 u33
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• first row of U , first column of L:



8 2 9
4 9 4
6 7 9


 =




1 0 0
1/2 1 0
3/4 l32 1






8 2 9
0 u22 u23

0 0 u33




• second row of U , second column of L:
[

9 4
7 9

]
−

[
1/2
3/4

] [
2 9

]
=

[
1 0
l32 1

] [
u22 u23

0 u33

]

[
8 −1/2

11/2 9/4

]
=

[
1 0

11/16 1

] [
8 −1/2
0 u33

]

• third row of U : u33 = 9/4 + 11/32 = 83/32

conclusion:

A =




8 2 9
4 9 4
6 7 9


 =




1 0 0
1/2 1 0
3/4 11/16 1






8 2 9
0 8 −1/2
0 0 83/32
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Not every nonsingular A can be factored as A = LU

A =




1 0 0
0 0 2
0 1 −1


 =




1 0 0
l21 1 0
l31 l32 1






u11 u12 u13

0 u22 u23

0 0 u33




• first row of U , first column of L:




1 0 0
0 0 2
0 1 −1


 =




1 0 0
0 1 0
0 l32 1






1 0 0
0 u22 u23

0 0 u33




• second row of U , second column of L:

[
0 2
1 −1

]
=

[
1 0
l32 1

] [
u22 u23

0 u33

]

u22 = 0, u23 = 2, l32 · 0 = 1 ?
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LU factorization (with row pivoting)

if A is n× n and nonsingular, then it can be factored as

A = PLU

P is a permutation matrix, L is unit lower triangular, U is upper triangular

• not unique; there may be several possible choices for P , L, U

• interpretation: permute the rows of A and factor PTA as PTA = LU

• also known as Gaussian elimination with partial pivoting (GEPP)

• cost: (2/3)n3 flops

we will skip the details of calculating P , L, U
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Example




0 5 5
2 9 0
6 8 8


 =




0 0 1
0 1 0
1 0 0






1 0 0
1/3 1 0
0 15/19 1






6 8 8
0 19/3 −8/3
0 0 135/19




the factorization is not unique; the same matrix can be factored as




0 5 5
2 9 0
6 8 8


 =




0 1 0
1 0 0
0 0 1






1 0 0
0 1 0
3 −19/5 1






2 9 0
0 5 5
0 0 27
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Effect of rounding error

[
10−5 1
1 1

] [
x1

x2

]
=

[
1
0

]

exact solution:

x1 =
−1

1− 10−5
, x2 =

1

1− 10−5

let us solve the equations using LU factorization, rounding intermediate
results to 4 significant decimal digits

we will do this for the two possible permutation matrices:

P =

[
1 0
0 1

]
or P =

[
0 1
1 0

]
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first choice of P : P = I (no pivoting)

[
10−5 1
1 1

]
=

[
1 0
105 1

] [
10−5 1
0 1− 105

]

L, U rounded to 4 decimal significant digits

L =

[
1 0
105 1

]
, U =

[
10−5 1
0 −105

]

forward substitution
[

1 0
105 1

] [
z1
z2

]
=

[
1
0

]
=⇒ z1 = 1, z2 = −105

back substitution
[

10−5 1
0 −105

] [
x1

x2

]
=

[
1

−105

]
=⇒ x1 = 0, x2 = 1

error in x1 is 100%
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second choice of P : interchange rows

[
1 1

10−5 1

]
=

[
1 0

10−5 1

] [
1 1
0 1− 10−5

]

L, U rounded to 4 decimal significant digits

L =

[
1 0

10−5 1

]
, U =

[
1 1
0 1

]

forward substitution
[

1 0
10−5 1

] [
z1
z2

]
=

[
0
1

]
=⇒ z1 = 0, z2 = 1

backward substitution
[

1 1
0 1

] [
x1

x2

]
=

[
0
1

]
=⇒ x1 = −1, x2 = 1

error in x1, x2 is about 10−5
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conclusion:

• for some choices of P , small rounding errors in the algorithm cause very
large errors in the solution

• this is called numerical instability: for the first choice of P , the
algorithm is unstable; for the second choice of P , it is stable

• from numerical analysis: there is a simple rule for selecting a good
(stable) permutation (we’ll skip the details, since we skipped the details
of the factorization algorithm)

• in the example, the second permutation is better because it permutes
the largest element (in absolute value) of the first column of A to the
1,1-position
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Sparse linear equations

if A is sparse, it is usually factored as

A = P1LUP2

P1 and P2 are permutation matrices

• interpretation: permute rows and columns of A and factor Ã = PT
1 APT

2

Ã = LU

• choice of P1 and P2 greatly affects the sparsity of L and U : many
heuristic methods exist for selecting good permutations

• in practice: #flops ≪ (2/3)n3; exact value is a complicated function of
n, number of nonzero elements, sparsity pattern
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Conclusion

different levels of understanding how linear equation solvers work:

highest level: x = A\b costs (2/3)n3; more efficient than x = inv(A)*b

intermediate level: factorization step A = PLU followed by solve step

lowest level: details of factorization A = PLU

• for most applications, level 1 is sufficient

• in some situations (e.g., multiple right-hand sides) level 2 is useful

• level 3 is important only for experts who write numerical libraries

LU factorization 7-22
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Theorem
If A is a square matrix that can be reduced to a row echelon form U by Gaussian elimination
without row interchanges, then A can be factored as A = LU, where L is a lower triangular matrix.

We know that the Gaussian elimination operations can be accomplished by multiplying A on the
left by an appropriate sequence of elementary matrices; that is, there exist elementary matrices
E1,E2, ...,Ek such that

Ek · · ·E2E1A = U

where U is an upper triangular matrix Since elementary matrices are invertible, we can solve for A as

A = E−1
1 E−1

2 · · ·E−1
k U

A = LU

L = E−1
1 E−1

2 · · ·E−1
k

L is lower triangular because:
• multiplying a row by a nonzero constant, and adding a scalar multiple of one row to another

generate elementary matrices that are lower triangular.
• multiplication of lower traingular matrices preserves the lower triangular property
• inverse of lower traingular matrices preserves the lower triangular property
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• If A is an invertible matrix that can be reduced to row echelon form without row interchanges,
then A can be factored uniquely as

A = LDU

where L is a lower triangular matrix with 1’s on the main diagonal, D is a diagonal matrix, and
U is an upper triangular matrix with 1’s on the main diagonal. This is called the
LDU-decomposition (or LDU-factorization) of A.

“shift” the diagonal entries of U (or of L) to a diagonal matrix D and write U as U = U ′D

• If desired, the diagonal matrix and the lower triangular matrix in the LU-decomposition can be
multiplied to produce an LU-decomposition in which the 1’s are on the main diagonal of U
rather than L. (This is yet another example that LU decompositions are not unique)

Note that the columns of L′ are obtained by dividing each entry in the corresponding column of L
by the diagonal entry in the column. Thus, for example, we can rewrite
In general, LU-decompositions are not unique.

A = LU =



l11 0 0
l21 l22 0
l31 l32 l33






1 u12 u13
0 1 u23
0 0 1




and L has nonzero diagonal entries (which will be true if A is invertible), then we can shift the
diagonal entries from the left factor to the right factor by writing

A =




1 0 0
l21/l11 1 0
l31/l11 l32/l22 1





l11 0 0
0 l22 0
0 0 l33






1 u12 u13
0 1 u23
0 0 1




=




1 0 0
l21/l11 1 0
l31/l11 l32/l22 1





l11 l11u12 l11u13
0 l22 l22u23
0 0 l33




which is another LU-decomposition of A.
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• In 1979 an important library of machine-independent linear algebra programs called LINPACK
was developed at Argonne National Laboratories.

• Many of the programs in that library use the LU and other decomposition methods (SVD,
Schur’s decomposition, Cholesky decomposition, etc).

• Variations of the LINPACK routines in Fortran are used in many computer programs, including
Scipy, MATLAB, Mathematica, and Maple.
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• A matrix A is said to be ill conditioned if relatively small changes in the entries of A can cause
relatively large changes in the solutions of Ax = b.

• A is said to be well conditioned if relatively small changes in the entries of A result in relatively
small changes in the solutions of Ax = b.

• reaching RREF as in Gauss-Jordan requires more computation and more numerical instability
hence disadvantageous.

• Gauss elimination is a direct method: the amount of operations can be specified in advance.
Indirect or Iterative methods work by iteratively improving approximate solutions until a
desired accuracy is reached. Amount of operations depend on the accuracy required. (way to
go if the matrix is sparse)
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Example

x1 − 0.25x2 − 0.25x3 = 50
−0.25x1 + x2 − 0.25x4 = 50
−0.25x1 + x3 − 0.25x4 = 25

− 0.25x2 − 0.25x3 + x4 = 25

x1 = 0.25x2 + 0.25x3 + 50
x2 = 0.25x1 + 0.25x4 + 50
x3 = 0.25x1 + 0.25x4 + 25
x4 = 0.25x2 + 0.25x3 + 25

We start from an approximation, eg, x (0)
1 = 100, x (0)

2 = 100, x (0)
3 = 100, x (0)

4 = 100, and use the equatiuons
above to find a perhaps better approximation:

x
(1)
1 = 0.25x (0)

2 + 0.25x (0)
3 + 50.00 = 100.00

x
(1)
2 = 0.25x (1)

1 + 0.25x (0)
4 + 50.00 = 100.00

x
(1)
3 = 0.25x (1)

1 + 0.25x (0)
4 + 25.00 = 75.00

x
(1)
4 = 0.25x (1)

2 + 0.25x (1)
3 + 25.00 = 68.75 20
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x
(2)
1 = 0.25x (1)

2 + 0.25x (1)
3 + 50.00 = 93.750

x
(2)
2 = 0.25x (2)

1 + 0.25x (1)
4 + 50.00 = 90.625

x
(2)
3 = 0.25x (2)

1 + 0.25x (1)
4 + 25.00 = 65.625

x
(2)
4 = 0.25x (2)

2 + 0.25x (2)
3 + 25.00 = 64.062
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