Scientific Programming

Numerical Methods
 LU Factorization

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark
[Based on slides by Lieven Vandenberghe, UCLA]

1. Operation Count
2. LU Factorization
3. Other Topics

In solving large scale-linear systems, Gaussian elimination and Gauss-Jordan elimination are not suitable because of:

- computer roundoff errors
- memory usage
- speed

Computer methods are based on LU decomposition.

Outline

1. Operation Count
2. LU Factorization
3. Other Topics

Complexity of matrix algorithms

- flop counts
- vector-vector operations
- matrix-vector product
- matrix-matrix product

Floating point numbers

$$
x=m \cdot \beta^{e} ; \quad l \leq e \leq u
$$

with mantissa m, base β, and exponent e

$$
m= \pm d_{0} \cdot d_{1} d_{2} \cdots d_{t}, \quad 0 \leq d_{i}<\beta
$$

β	t	l	u

IEEE SP	2	23	-126	127
IEEE DP	2	52	-1022	1023
Cray	2	48	-16383	16384
HP calculator	10	12	-499	499
IBM mainframe	16	6	-64	63

Flop counts

floating-point operation (flop)

- one floating-point addition, subtraction, multiplication, or division
- other common definition: one multiplication followed by one addition

flop counts of matrix algorithm

- total number of flops is typically a polynomial of the problem dimensions
- usually simplified by ignoring lower-order terms
applications
- a simple, machine-independent measure of algorithm complexity
- not an accurate predictor of computation time on modern computers

Vector-vector operations

- inner product of two n-vectors

$$
\boldsymbol{x}^{T} \boldsymbol{y}=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}
$$

n multiplications and $n-1$ additions $=2 n$ flops $(2 n$ if $n \gg 1$)

- addition or subtraction of n-vectors: n flops
- scalar multiplication of n-vector : n flops

Matrix-vector product

matrix-vector product with $m \times n$-matrix A :

$$
y=A x
$$

m elements in y; each element requires an inner product of length n :

$$
(2 n-1) m \text { flops }
$$

approximately $2 m n$ for large n special cases

- $m=n, A$ diagonal: n flops
- $m=n, A$ lower triangular: $n(n+1)$ flops
- A very sparse (lots of zero coefficients): \#flops $\ll 2 m n$

Matrix-matrix product

product of $m \times n$-matrix A and $n \times p$-matrix B :

$$
C=A B
$$

$m p$ elements in C; each element requires an inner product of length n :

$$
m p(2 n-1) \text { flops }
$$

approximately 2 mnp for large n.

Approximate Cost for an $\boldsymbol{n} \times \boldsymbol{n}$ Matrix \boldsymbol{A} with Large \boldsymbol{n}	
Algorithm	Cost in Flops
Gauss-Jordan elimination (forward phase)	$\approx \frac{2}{3} n^{3}$
Gauss-Jordan elimination (backward phase)	$\approx n^{2}$
$L U$-decomposition of A	$\approx \frac{2}{3} n^{3}$
Forward substitution to solve $L \mathbf{y}=\mathbf{b}$	$\approx n^{2}$
Backward substitution to solve $U \mathbf{x}=\mathbf{y}$	$\approx n^{2}$
A^{-1} by reducing $[A \mid I]$ to $\left[I \mid A^{-1}\right]$	$\approx 2 n^{3}$
Compute $A^{-1} \mathbf{b}$	$\approx 2 n^{3}$

1. Operation Count
2. LU Factorization
3. Other Topics

Overview

- factor-solve method
- LU factorization
- solving $A x=b$ with A nonsingular
- the inverse of a nonsingular matrix
- LU factorization algorithm
- effect of rounding error
- sparse LU factorization

Definitions

Definition (Triangular Matrices)

An $n \times n$ matrix is said to be upper triangular if $a_{i j}=0$ for $i>j$ and lower triangular if $a_{i j}=0$ for $i<j$. Also A is said to be triangular if it is either upper triangular or lower triangular.

Example:

$$
\left[\begin{array}{lll}
3 & 0 & 0 \\
2 & 1 & 0 \\
1 & 4 & 3
\end{array}\right] \quad\left[\begin{array}{lll}
3 & 5 & 1 \\
0 & 1 & 3 \\
0 & 0 & 7
\end{array}\right]
$$

Definition (Diagonal Matrices)
An $n \times n$ matrix is diagonal if $a_{i j}=0$ whenever $i \neq j$.
Example:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

Multiple right-hand sides

two equations with the same matrix but different right-hand sides

$$
A x=b, \quad A \tilde{x}=\tilde{b}
$$

- factor A once (f flops)
- solve with right-hand side b (s flops)
- solve with right-hand side \tilde{b} (s flops)
cost: $f+2 s$ instead of $2(f+s)$ if we solve second equation from scratch conclusion: if $f \gg s$, we can solve the two equations at the cost of one

LU factorization

LU factorization without pivoting

$$
A=L U
$$

- L unit lower triangular, U upper triangular
- does not always exist (even if A is nonsingular)

LU factorization (with row pivoting)

$$
A=P L U
$$

- P permutation matrix, L unit lower triangular, U upper triangular
- exists if and only if A is nonsingular (see later)
cost: $(2 / 3) n^{3}$ if A has order n

Solving linear equations by LU factorization

solve $A x=b$ with A nonsingular of order n
factor-solve method using LU factorization

1. factor A as $A=P L U\left((2 / 3) n^{3}\right.$ flops $)$
2. solve $(P L U) x=b$ in three steps

- permutation: $z_{1}=P^{T} b$ (0 flops)
- forward substitution: solve $L z_{2}=z_{1}$ (n^{2} flops)
- back substitution: solve $U x=z_{2}$ (n^{2} flops)
total cost: $(2 / 3) n^{3}+2 n^{2}$ flops, or roughly $(2 / 3) n^{3}$
this is the standard method for solving $A x=b$

Multiple right-hand sides

two equations with the same matrix A (nonsingular and $n \times n$):

$$
A x=b, \quad A \tilde{x}=\tilde{b}
$$

- factor A once
- forward/back substitution to get x
- forward/back substitution to get \tilde{x}
cost: $(2 / 3) n^{3}+4 n^{2}$ or roughly $(2 / 3) n^{3}$
exercise: propose an efficient method for solving

$$
A x=b, \quad A^{T} \tilde{x}=\tilde{b}
$$

Inverse of a nonsingular matrix

suppose A is nonsingular of order n, with LU factorization

$$
A=P L U
$$

- inverse from LU factorization

$$
A^{-1}=(P L U)^{-1}=U^{-1} L^{-1} P^{T}
$$

- gives interpretation of solve step: evaluate

$$
x=A^{-1} b=U^{-1} L^{-1} P^{T} b
$$

in three steps

$$
z_{1}=P^{T} b, \quad z_{2}=L^{-1} z_{1}, \quad x=U^{-1} z_{2}
$$

Computing the inverse

solve $A X=I$ by solving n equations

$$
A X_{1}=e_{1}, \quad A X_{2}=e_{2}, \quad \ldots, \quad A X_{n}=e_{n}
$$

X_{i} is the i th column of $X ; e_{i}$ is the i th unit vector of size n

- one LU factorization of $A: 2 n^{3} / 3$ flops
- n solve steps: $2 n^{3}$ flops
total: $(8 / 3) n^{3}$ flops
conclusion: do not solve $A x=b$ by multiplying A^{-1} with b

LU factorization without pivoting

partition A, L, U as block matrices:

$$
A=\left[\begin{array}{ll}
a_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right], \quad L=\left[\begin{array}{cc}
1 & 0 \\
L_{21} & L_{22}
\end{array}\right], \quad U=\left[\begin{array}{cc}
u_{11} & U_{12} \\
0 & U_{22}
\end{array}\right]
$$

- a_{11} and u_{11} are scalars
- L_{22} unit lower-triangular, U_{22} upper triangular of order $n-1$
determine L and U from $A=L U$, i.e.,

$$
\begin{aligned}
{\left[\begin{array}{ll}
a_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] } & =\left[\begin{array}{cc}
1 & 0 \\
L_{21} & L_{22}
\end{array}\right]\left[\begin{array}{cc}
u_{11} & U_{12} \\
0 & U_{22}
\end{array}\right] \\
& =\left[\begin{array}{cc}
u_{11} & U_{12} \\
u_{11} L_{21} & L_{21} U_{12}+L_{22} U_{22}
\end{array}\right]
\end{aligned}
$$

recursive algorithm:

- determine first row of U and first column of L

$$
u_{11}=a_{11}, \quad U_{12}=A_{12}, \quad L_{21}=\left(1 / a_{11}\right) A_{21}
$$

- factor the $(n-1) \times(n-1)$-matrix $A_{22}-L_{21} U_{12}$ as

$$
A_{22}-L_{21} U_{12}=L_{22} U_{22}
$$

this is an LU factorization (without pivoting) of order $n-1$
cost: $(2 / 3) n^{3}$ flops (no proof)

Example

LU factorization (without pivoting) of

$$
A=\left[\begin{array}{lll}
8 & 2 & 9 \\
4 & 9 & 4 \\
6 & 7 & 9
\end{array}\right]
$$

write as $A=L U$ with L unit lower triangular, U upper triangular

$$
A=\left[\begin{array}{lll}
8 & 2 & 9 \\
4 & 9 & 4 \\
6 & 7 & 9
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right]\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]
$$

- first row of U, first column of L :

$$
\left[\begin{array}{lll}
8 & 2 & 9 \\
4 & 9 & 4 \\
6 & 7 & 9
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 / 2 & 1 & 0 \\
3 / 4 & l_{32} & 1
\end{array}\right]\left[\begin{array}{ccc}
8 & 2 & 9 \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]
$$

- second row of U, second column of L :

$$
\begin{aligned}
{\left[\begin{array}{ll}
9 & 4 \\
7 & 9
\end{array}\right]-\left[\begin{array}{l}
1 / 2 \\
3 / 4
\end{array}\right]\left[\begin{array}{ll}
2 & 9
\end{array}\right] } & =\left[\begin{array}{cc}
1 & 0 \\
l_{32} & 1
\end{array}\right]\left[\begin{array}{cc}
u_{22} & u_{23} \\
0 & u_{33}
\end{array}\right] \\
{\left[\begin{array}{cc}
8 & -1 / 2 \\
11 / 2 & 9 / 4
\end{array}\right] } & =\left[\begin{array}{cc}
1 & 0 \\
11 / 16 & 1
\end{array}\right]\left[\begin{array}{cc}
8 & -1 / 2 \\
0 & u_{33}
\end{array}\right]
\end{aligned}
$$

- third row of $U: u_{33}=9 / 4+11 / 32=83 / 32$
conclusion:

$$
A=\left[\begin{array}{lll}
8 & 2 & 9 \\
4 & 9 & 4 \\
6 & 7 & 9
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 / 2 & 1 & 0 \\
3 / 4 & 11 / 16 & 1
\end{array}\right]\left[\begin{array}{ccc}
8 & 2 & 9 \\
0 & 8 & -1 / 2 \\
0 & 0 & 83 / 32
\end{array}\right]
$$

Not every nonsingular A can be factored as $A=L U$

$$
A=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 0 & 2 \\
0 & 1 & -1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right]\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]
$$

- first row of U, first column of L :

$$
\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 0 & 2 \\
0 & 1 & -1
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & l_{32} & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]
$$

- second row of U, second column of L :

$$
\begin{gathered}
{\left[\begin{array}{rr}
0 & 2 \\
1 & -1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
l_{32} & 1
\end{array}\right]\left[\begin{array}{cc}
u_{22} & u_{23} \\
0 & u_{33}
\end{array}\right]} \\
u_{22}=0, u_{23}=2, l_{32} \cdot 0=1 ?
\end{gathered}
$$

LU factorization (with row pivoting)

if A is $n \times n$ and nonsingular, then it can be factored as

$$
A=P L U
$$

P is a permutation matrix, L is unit lower triangular, U is upper triangular

- not unique; there may be several possible choices for P, L, U
- interpretation: permute the rows of A and factor $P^{T} A$ as $P^{T} A=L U$
- also known as Gaussian elimination with partial pivoting (GEPP)
- cost: $(2 / 3) n^{3}$ flops
we will skip the details of calculating P, L, U

Example

$$
\left[\begin{array}{lll}
0 & 5 & 5 \\
2 & 9 & 0 \\
6 & 8 & 8
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 / 3 & 1 & 0 \\
0 & 15 / 19 & 1
\end{array}\right]\left[\begin{array}{ccc}
6 & 8 & 8 \\
0 & 19 / 3 & -8 / 3 \\
0 & 0 & 135 / 19
\end{array}\right]
$$

the factorization is not unique; the same matrix can be factored as

$$
\left[\begin{array}{ccc}
0 & 5 & 5 \\
2 & 9 & 0 \\
6 & 8 & 8
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & -19 / 5 & 1
\end{array}\right]\left[\begin{array}{ccc}
2 & 9 & 0 \\
0 & 5 & 5 \\
0 & 0 & 27
\end{array}\right]
$$

Effect of rounding error

$$
\left[\begin{array}{cc}
10^{-5} & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

exact solution:

$$
x_{1}=\frac{-1}{1-10^{-5}}, \quad x_{2}=\frac{1}{1-10^{-5}}
$$

let us solve the equations using LU factorization, rounding intermediate results to 4 significant decimal digits
we will do this for the two possible permutation matrices:

$$
P=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \text { or } \quad P=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

first choice of $P: P=I$ (no pivoting)

$$
\left[\begin{array}{cc}
10^{-5} & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
10^{5} & 1
\end{array}\right]\left[\begin{array}{cc}
10^{-5} & 1 \\
0 & 1-10^{5}
\end{array}\right]
$$

L, U rounded to 4 decimal significant digits

$$
L=\left[\begin{array}{cc}
1 & 0 \\
10^{5} & 1
\end{array}\right], \quad U=\left[\begin{array}{cc}
10^{-5} & 1 \\
0 & -10^{5}
\end{array}\right]
$$

forward substitution

$$
\left[\begin{array}{cc}
1 & 0 \\
10^{5} & 1
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \Longrightarrow \quad z_{1}=1, \quad z_{2}=-10^{5}
$$

back substitution

$$
\left[\begin{array}{cc}
10^{-5} & 1 \\
0 & -10^{5}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-10^{5}
\end{array}\right] \quad \Longrightarrow \quad x_{1}=0, \quad x_{2}=1
$$

error in x_{1} is 100%
second choice of P : interchange rows

$$
\left[\begin{array}{cc}
1 & 1 \\
10^{-5} & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
10^{-5} & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
0 & 1-10^{-5}
\end{array}\right]
$$

L, U rounded to 4 decimal significant digits

$$
L=\left[\begin{array}{cc}
1 & 0 \\
10^{-5} & 1
\end{array}\right], \quad U=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

forward substitution

$$
\left[\begin{array}{cc}
1 & 0 \\
10^{-5} & 1
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \Longrightarrow \quad z_{1}=0, \quad z_{2}=1
$$

backward substitution

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \Longrightarrow \quad x_{1}=-1, \quad x_{2}=1
$$

error in x_{1}, x_{2} is about 10^{-5}

conclusion:

- for some choices of P, small rounding errors in the algorithm cause very large errors in the solution
- this is called numerical instability: for the first choice of P, the algorithm is unstable; for the second choice of P, it is stable
- from numerical analysis: there is a simple rule for selecting a good (stable) permutation (we'll skip the details, since we skipped the details of the factorization algorithm)
- in the example, the second permutation is better because it permutes the largest element (in absolute value) of the first column of A to the 1,1-position

Sparse linear equations

if A is sparse, it is usually factored as

$$
A=P_{1} L U P_{2}
$$

P_{1} and P_{2} are permutation matrices

- interpretation: permute rows and columns of A and factor $\tilde{A}=P_{1}^{T} A P_{2}^{T}$

$$
\tilde{A}=L U
$$

- choice of P_{1} and P_{2} greatly affects the sparsity of L and U : many heuristic methods exist for selecting good permutations
- in practice: \#flops $\ll(2 / 3) n^{3}$; exact value is a complicated function of n, number of nonzero elements, sparsity pattern

Conclusion

different levels of understanding how linear equation solvers work:
highest level: $\mathrm{x}=\mathrm{A} \backslash \mathrm{b}$ costs $(2 / 3) n^{3}$; more efficient than $\mathrm{x}=\operatorname{inv}(\mathrm{A}) * \mathrm{~b}$
intermediate level: factorization step $A=P L U$ followed by solve step
lowest level: details of factorization $A=P L U$

- for most applications, level 1 is sufficient
- in some situations (e.g., multiple right-hand sides) level 2 is useful
- level 3 is important only for experts who write numerical libraries

Theorem

If A is a square matrix that can be reduced to a row echelon form U by Gaussian elimination without row interchanges, then A can be factored as $A=L U$, where L is a lower triangular matrix.

- If A is an invertible matrix that can be reduced to row echelon form without row interchanges, then A can be factored uniquely as

$$
A=L D U
$$

where L is a lower triangular matrix with 1 's on the main diagonal, D is a diagonal matrix, and U is an upper triangular matrix with 1 's on the main diagonal. This is called the LDU-decomposition (or LDU-factorization) of A.

- If desired, the diagonal matrix and the lower triangular matrix in the $L U$-decomposition can be multiplied to produce an $L U$-decomposition in which the 1 's are on the main diagonal of U rather than L. (This is yet another example that LU decompositions are not unique)

Software

- In 1979 an important library of machine-independent linear algebra programs called LINPACK was developed at Argonne National Laboratories.
- Many of the programs in that library use the LU and other decomposition methods (SVD, Schur's decomposition, Cholesky decomposition, etc).
- Variations of the LINPACK routines in Fortran are used in many computer programs, including Scipy, MATLAB, Mathematica, and Maple.

1. Operation Count
2. LU Factorization
3. Other Topics

Numerical Solutions

- A matrix A is said to be ill conditioned if relatively small changes in the entries of A can cause relatively large changes in the solutions of $A \boldsymbol{x}=\boldsymbol{b}$.
- A is said to be well conditioned if relatively small changes in the entries of A result in relatively small changes in the solutions of $A \boldsymbol{x}=\boldsymbol{b}$.
- reaching RREF as in Gauss-Jordan requires more computation and more numerical instability hence disadvantageous.
- Gauss elimination is a direct method: the amount of operations can be specified in advance. Indirect or Iterative methods work by iteratively improving approximate solutions until a desired accuracy is reached. Amount of operations depend on the accuracy required. (way to go if the matrix is sparse)

Gauss-Seidel Iterative Method

$$
\begin{aligned}
& x_{1}-0.25 x_{2}-0.25 x_{3}=50 \\
& -0.25 x_{1}+x_{2} \quad-0.25 x_{4}=50 \\
& -0.25 x_{1}+x_{3}-0.25 x_{4}=25 \\
& -0.25 x_{2}-0.25 x_{3}+\quad x_{4}=25
\end{aligned}
$$

$$
\begin{array}{lll}
x_{1}= & 0.25 x_{2}+0.25 x_{3} & +50 \\
x_{2}=0.25 x_{1} & & +0.25 x_{4}+50 \\
x_{3}=0.25 x_{1} & & +0.25 x_{4}+25 \\
x_{4}= & 0.25 x_{2}+0.25 x_{3} &
\end{array}
$$

We start from an approximation, eg, $x_{1}^{(0)}=100, x_{2}^{(0)}=100, x_{3}^{(0)}=100, x_{4}^{(0)}=100$, and use the equatiuons above to find a perhaps better approximation:

$$
\begin{aligned}
& \begin{array}{l}
x_{1}^{(1)}= \\
x_{2}^{(1)}=0.25 x_{1}^{(1)}
\end{array} \quad 0.25 x_{2}^{(0)}+0.25 x_{3}^{(0)} \\
& \begin{array}{r}
+50.00=100.00 \\
+0.25 x_{4}^{(0)}+50.00=100.00
\end{array} \\
& x_{3}^{(1)}=0.25 x_{1}^{(1)}+0.25 x_{4}^{(0)}+25.00=75.00 \\
& x_{4}^{(1)}=\quad 0.25 x_{2}^{(1)}+0.25 x_{3}^{(1)}+25.00=68.75
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}^{(2)}=\quad 0.25 x_{2}^{(1)}+0.25 x_{3}^{(1)}+50.00=93.750 \\
& x_{2}^{(2)}=0.25 x_{1}^{(2)}
\end{aligned}
$$

$$
\begin{aligned}
& x_{3}^{(2)}=0.25 x_{1}^{(2)} \\
& x_{4}^{(2)}=
\end{aligned}
$$

