
DM587/AI511
Scientific Programming

Linear Algebra with Applications

Python - Part 1

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

[Based on the booklet “Python Essentials”]

Course Organization
PythonOutline

1. Course Organization

2. Python
Basics
Data Structures
Control Flow Tools
Standard Library
Object Oriented Programming
Type Annotations

2

Course Organization
PythonOutline

1. Course Organization

2. Python
Basics
Data Structures
Control Flow Tools
Standard Library
Object Oriented Programming
Type Annotations

3

Course Organization
PythonContents in Scientific Programming (DM587)

4

Course Organization
PythonStudent Assessment

AI511 (7.5 ECTS)

Theoretical 24-h take-home assignment
(with Vaidas, 05/11)

Three Python assignments

7-point grading scale
external censor

DM587 (5 ECTS)

Six Weekly Python assignments

7-point grading scale
internal censor

5

Course Organization
PythonWeekly Assignments

Six weekly Python assignments (aka labs)

All scored from 0 to 100 (some with extra points). Hence 600 points overall.

For DM587:
You must achieve an average score > 60% (ie, 360 points) in the labs to be guaranteed to
pass

Final grade: is based on how many points above 360.

6

Course Organization
PythonLabs: Practicalities

Submissions via git

Read the Appendix A and B

Check that your repository exist in https://gitlab.sdu.dk

Specification files with examples

Automatic grading after submission up to the deadline
You can submit as many times as you wish
Only the last grading before the deadline counts
But do not submit without passing the local tests or with syntax errors (this will be noted)
Assessment at https://dalila.imada.sdu.dk/

We will check for plagiarism

7

https://gitlab.sdu.dk
https://dalila.imada.sdu.dk/

Course Organization
PythonHonor Code

By registering to this course, you agree to:

complete all assignments with your own work;

acknowledge any and all external sources used in your work;

refrain from any activity that would dishonestly or fraudulently improve your results or
disadvantage others in the course;

refrain from disclosing answers of assignments to others;

maintain only one user account and not let anyone else use your username and/or password; and
not access or attempt to access any other user’s account, or misrepresent or attempt to
misrepresent your identity while using the git system.

This Honor Code is not intended to prohibit discussion of course material. While students must submit
work that is their own, students should feel free to discuss lectures and exercise sheets or other course
material with others either in-person or online.

8

Course Organization
PythonOutline

1. Course Organization

2. Python
Basics
Data Structures
Control Flow Tools
Standard Library
Object Oriented Programming
Type Annotations

11

Course Organization
PythonRunning Python — Scripts

A Python script

python_intro.py
"""This is the file header.
The header contains basic information about the file.
"""

if __name__ == "__main__":
print("Hello, world!\n") # indent with four spaces (not TAB)

insert in a file with a text editor, for example, emacs, vim, VS code.

execute from command prompt on Terminal on Linux or Mac and Command Prompt on
Windows or Bash Shell on Windows Subsystem for Linux (WSL)

12

Course Organization
PythonRunning Python — Interactively

Python:

$ python # Start the Python interpreter.
>>> print("This is plain Python.") # Execute some code.
This is plain Python.

IPython:

>>> exit() # Exit the Python interpreter.
$ ipython # Start IPython.

In [1]: print("This is IPython!") # Execute some code.
This is IPython!

In [2]: %run python_intro.py # Run a particular Python script.
Hello, world!

13

Course Organization
PythonJupyter (formerly IPython Notebook)

Object introspection: quickly reveals all methods and attributes associated with an object.
help() provides interactive help.

A list is a basic Python data structure. To see the methods associated with
a list, type the object name (list), followed by a period, and press tab.
In [1]: list. # Press 'tab'.

append() count() insert() remove()
clear() extend() mro() reverse()
copy() index() pop() sort()

To learn more about a specific method, use a '?' and hit 'Enter'.
In [1]: list.append?
Docstring: L.append(object) -> None -- append object to end
Type: method_descriptor

In [2]: help() # Start IPython's interactive help utility.
help> list # Get documentation on the list class.
Help on class list in module __builtin__:
...
<<help> quit # End the interactive help session.

14

Course Organization
PythonWhich Python Kernel?

Since 7 October 2024, Python 3.13 is the latest stable release, and 3.13 and 3.12 are the only
versions with active (as opposed to just security) support and Python 3.9 is the oldest
supported version of Python (albeit in the ’security support’ phase), due to Python 3.8
reaching end-of-life.

15

Course Organization
PythonVisual Studio Code

Visual Studio (full version) is a “full-featured” development environment. License:
Microsoft proprietary software

Visual Studio (free "Express"versions - only until 2017) are feature-centered and simplified
versions of the full version. Feature-centered meaning that there are different versions
(Visual Studio Web Developer, Visual Studio C#, etc.).

Visual Studio (free Community edition - since 2015) is a simplified version of the full
version and replaces the separated express editions used before 2015.

Visual Studio Code (VSCode) is a cross-platform (Linux, Mac OS, Windows) editor that
can be extended with plugins to your needs. License: Proprietary freeware based on
open-source project. https://code.visualstudio.com

16

https://code.visualstudio.com

Course Organization
PythonSet up in VS Code

17

Course Organization
PythonResources

Alternatively, use IPython side-by-side with a text editor to test syntax and small code
snippets quickly.

VS Code / Spyder3 / JupyterLab

Consult the internet (eg, stackoverflow.com) with appropriate keywords;

The official Python tutorial:
http://docs.python.org/3/tutorial/introduction.html

PEP8 - Python Enhancement Proposals style guide:
http://www.python.org/dev/peps/pep-0008/
pylint: linter, a static code analysis tool https://www.pylint.org/

18

http://stackoverflow.com/
http://docs.python.org/3/tutorial/introduction.html
http://www.python.org/dev/peps/pep-0008/
https://www.pylint.org/

Course Organization
PythonOutline

1. Course Organization

2. Python
Basics
Data Structures
Control Flow Tools
Standard Library
Object Oriented Programming
Type Annotations

19

Course Organization
PythonArithmetics

+, -, *, /, **, and // operators.
** exponentiation; % modular division.
underscore character _ is a variable with the value of the previous command’s output

>>> 12 * 3
36
>>> _ / 4
9.0

Data comparisons like < and > act as expected.
operator == checks for numerical equality; operators <= and >= correspond to ≤ and ≥
Operators and, or, and not (no need for parenthesis)

>>> 3 > 2.99
True
>>> 1.0 <= 1 or 2 > 3
True
>>> 7 == 7 and not 4 < 4
True

20

Course Organization
PythonVariables

Basic types: numbers (integer, float), Boolean, string

Dynamically typed language: does not require to specify data type

>>> x = 12 # Initialize x with the integer 12.
>>> y = 2 * 6 # Initialize y with the integer 2*6 = 12.
>>> x == y # Compare the two variable values.
True

>>> x, y = 2, 4 # Give both x and y new values in one line.
>>> x == y
False

21

Course Organization
PythonFunctions: Syntax

>>> def add(x, y):
... return x + y # Indent with four spaces.

mixing tabs and spaces confuses the interpreter and causes problems.
most text editors set the indentation type to spaces (soft tabs)

Functions are defined with parameters and called with arguments,

>>> def area(width, height): # Define the function.
... return width * height
...
>>> area(2, 5) # Call the function.
10

>>> def arithmetic(a, b):
... return a - b, a * b # Separate return values with commas.
...
>>> x, y = arithmetic(5, 2) # Unpack the returns into two variables.
>>> print(x, y)
3 10

22

Course Organization
PythonFunctions: lambda

The keyword lambda is a shortcut for creating one-line functions.

Define the polynomials the usual way using 'def'.
>>> def g(x, y, z):
... return x + y**2 - z**3

Equivalently, define the polynomials quickly using 'lambda'.
>>> g = lambda x, y, z: x + y**2 - z**3

23

Course Organization
PythonFunctions: Docstrings

>>> def add(x, y):
... """Return the sum of the two inputs.""" # one-liner
... return x + y

>>>def complex(real=0.0, imag=0.0):
... """Form a complex number.
...
... Keyword arguments:
... real -- the real part (default 0.0)
... imag -- the imaginary part (default 0.0)
... """ # multi-liner
... if imag == 0.0 and real == 0.0:
... return complex_zero
... ...
>>> def arithmetic(a, b):
... """Return the difference and the product of the two inputs."""
... return a - b, a * b

Multi-line docstrings consist of a summary line just like a one-line docstring, followed by a
blank line, followed by a more elaborate description. 24

Course Organization
PythonFunctions: Returned Values

>>> def oops(i):
... """Increment i (but forget to return anything)."""
... print(i + 1)
...
>>> def increment(i):
... """Increment i."""
... return i + 1
...
>>> x = oops(1999) # x contains 'None' since oops()
2000 # doesn't have a return statement.
>>> y = increment(1999) # However, y contains a value.
>>> print(x, y)
None 2000

25

Course Organization
PythonFunctions: Arguments

Arguments are passed to functions based on position or name
Positional arguments must be defined before named arguments.

Correctly define pad() with the named argument after positional arguments.
>>> def pad(a, b, c=0):
... """Print the arguments, plus a zero if c is not specified."""
... print(a, b, c)
Call pad() with 3 positional arguments.
>>> pad(2, 4, 6)
2 4 6
Call pad() with 3 named arguments. Note the change in order.
>>> pad(b=3, c=5, a=7)
7 3 5
Call pad() with 2 named arguments, excluding c.
>>> pad(b=1, a=2)
2 1 0
Call pad() with 1 positional argument and 2 named arguments.
>>> pad(1, c=2, b=3)
1 3 2

26

Course Organization
PythonFunctions: Generalized Input

*args is a list of the positional arguments
**kwargs is a dictionary mapping the keywords to their argument.

>>> def report(*args, **kwargs):
... for i, arg in enumerate(args):
... print("Argument " + str(i) + ":", arg)
... for key in kwargs:
... print("Keyword", key, "-->", kwargs[key])
...
>>> report("TK", 421, exceptional=False, missing=True)
Argument 0: TK
Argument 1: 421
Keyword missing --> True
Keyword exceptional --> False

27

Course Organization
PythonOutline

1. Course Organization

2. Python
Basics
Data Structures
Control Flow Tools
Standard Library
Object Oriented Programming
Type Annotations

28

Course Organization
PythonNumerical types

Python has four numerical data types: int, long, float, and complex.

>>> type(3) # Numbers without periods are integers.
int

>>> type(3.0) # Floats have periods (3. is also a float).
float

Division:

>>> 15 / 4 # Float division performs as expected. (but not in Py 2.7!)
3.75
>>> 15 // 4 # Integer division rounds the result down.
3
>>> 15. // 4
3.0

29

Course Organization
PythonStrings

Strings are created with " or '
To concatenate two or more strings, use the + operator between string variables or literals.

>>> str1 = "Hello" # either single or double quotes.
>>> str2 = 'world'
>>> my_string = str1 + " " + str2 + '!' # concatenation
>>> my_string
'Hello world!'

30

Course Organization
PythonSlicing

Strings are arrays of characters. Indexing begins at 0!
Slicing syntax is [start:stop:step]. Defaults: [0:len():1].

>>> my_string = "Hello world!"
>>> my_string[4] # Indexing begins at 0.
'o'
>>> my_string[-1] # Negative indices count backward from the end.
'!'
Slice from the 0th to the 5th character (not including the 5th character).
>>> my_string[:5]
'Hello'
Slice from the 6th character to the end.
>>> my_string[6:]
'world!'
Slice from the 3rd to the 8th character (not including the 8th character).
>>> my_string[3:8]
'lo wo'
Get every other character in the string.
>>> my_string[::2]
'Hlowrd'

31

Course Organization
PythonBuilt-in Types

The built-in data structures:

tuple, list, set, dict

collections module

Various built in operations

These are always available:

all versions of Python

all operating systems

all distributions of Python

you do not need to install any package

Fast development:

exploring ideas

building prototypes

solving one-off problems
If you need performance need to optimize, try
pypy or change language

32

Course Organization
PythonTuple

aka, record, structure, a row in a database: ordered collection of elements
packing and unpacking (unfolding) values.

Basic usage
record = (val1, val2, ↪→

↪→val3)
a, b, c = record
val = record[n]

>>> row = ("Mike", "John", "Mads")
>>> row[1]
"John"
>>> both = arithmetic(5,2) # or get them both as a ↪→

↪→tuple.
>>> print(both)
(3, 10)

33

Course Organization
PythonMutable vs Immutable Objects

Immutable Objects: built-in types like int, float, bool, string, tuple. Objects of these
types can’t be changed after they are created.

message = "Welcome to DM587/AI511"
message[0] = 'p'
print(message)

Error :
#
message[0] = 'p'
TypeError: 'str' object does not ↪→

↪→support item assignment

tuple1 = (0, 1, 2, 3)
tuple1[0] = 4
print(tuple1)

Error :
#
tuple1[0]=4
TypeError: 'tuple' object does not↪→

↪→ support item assignment

Mutable Objects: are the following built-in types list, dict, set and custom classes

34

Course Organization
PythonList

Mutable sequence, array
Enforcing order

Basic usage
items = [val1, val2, .., ↪→

↪→val3]
x = items[n]
items[n] = x
del items[n]
items.append(value)
items.sort()
items.insert(n, value)
items.remove(value)
items.pop()

>>> my_list = ["Hello", 93.8, "world", 10]
>>> my_list[0]
'Hello'
>>> my_list[-2]
'world'
>>> my_list[:2]
['Hello', 93.8]

35

Course Organization
PythonList

>>> my_list = [1, 2] # Create a simple list of two integers.
>>> my_list.append(4) # Append the integer 4 to the end.
>>> my_list.insert(2, 3) # Insert 3 at location 2.
>>> my_list
[1, 2, 3, 4]
>>> my_list.remove(3) # Remove 3 from the list.
>>> my_list.pop() # Remove (and return) the last entry.
4
>>> my_list
[1, 2]

Slicing is also very useful for replacing values in a list.

>>> my_list = [10, 20, 30, 40, 50]
>>> my_list[0] = -1
>>> my_list[3:] = [8, 9]
>>> print(my_list)
[-1, 20, 30, 8, 9]

36

Course Organization
PythonList

The in operator quickly checks if a given value is in a list (or another iterable, including strings).

>>> my_list = [1, 2, 3, 4, 5]
>>> 2 in my_list
True
>>> 6 in my_list
False
>>> 'a' in "xylophone" # 'in' also works on strings.
False

37

Course Organization
PythonSet

unordered sequence
uniqueness, membership test

Basic usage
s = {val1, val2, ..., valn↪→

↪→}
s.add(val)
s.discard(val)
s.remove(val) # throws ↪→

↪→exception if the ↪→
↪→element is not ↪→
↪→present in the set

val in s
s.union({val})
s.intersection({val})
s.difference({val})
s.symmetric_difference({↪→

↪→val})

Initialize some sets. Repeats are not added.
>>> gym_members = {"John", "John", "Jane", "Bob"}
>>> print(gym_members)
{'John', 'Bob', 'Jane'}

>>> gym_members.add("Josh")
>>> gym_members.discard("John")
>>> print(gym_members)
{'Josh', 'Bob', 'Jane'}

>>> gym_members.intersection({"Josh", "Ian", "↪→
↪→Jared"})

{'Josh'}
>>> gym_members.difference({"Bob", "Sarah"})
{'Josh', 'Jane'}

38

Course Organization
PythonDict

mapping, associative (key,value) array (implemented as a hash table)
unordered
lookup table, indices, key values need to be immutable

Basic usage
d = { key1: val1, key2: ↪→

↪→val2, key3: val3 }
val = d[key]
d[key] = val
del d[key]
key in d
d.keys()
d.values()
d.pop(key)
d.items()

>>> my_dictionary = {"business": 4121, "math": ↪→
↪→2061, "visual arts": 7321}

>>> print(my_dictionary["math"])
2061

>>> my_dictionary["science"] = 6284
>>> my_dictionary.pop("business")
4121
>>> print(my_dictionary)
{'math': 2061, 'visual arts': 7321, 'science': ↪→

↪→6284}

>>> my_dictionary.keys()
dict_keys(['math', 'visual arts', 'science'])
>>> my_dictionary.values()
dict_values([2061, 7321, 6284]) 39

Course Organization
PythonFurther Collections

>>> from collections import namedtuple
>>> Person = namedtuple('Person', ['first','last','address'])
>>> row = Person('Marco','Chiarandini','Campusvej')
>>> row.first
'Marco'

>>> from collections import Counter # histograms
>>> c = Counter('xyzzzy')
>>> c
Counter({'x': 1, 'y': 2, 'z': 3})

>>> from collections import defaultdict # multidict, one-many relationships
>>> d = defaultdict(list)
>>> d['spam'].append(42)
>>> d['blah'].append(13)
>>> d['spam'].append(10)
>>> d
{'blah': [42], 'spam': [13, 10]}

40

Course Organization
PythonFurther Collections

>>> from collections import OrderedDict # remembers the order entries were ↪→
↪→added

>>> # regular unsorted dictionary
>>> d = {'banana': 3, 'apple': 4, 'pear': 1, 'orange': 2}

>>> # dictionary sorted by key
>>> OrderedDict(sorted(d.items(), key=lambda t: t[0]))
OrderedDict([('apple', 4), ('banana', 3), ('orange', 2), ('pear', 1)])

>>> # dictionary sorted by value
>>> OrderedDict(sorted(d.items(), key=lambda t: t[1]))
OrderedDict([('pear', 1), ('orange', 2), ('banana', 3), ('apple', 4)])

>>> # dictionary sorted by length of the key string
>>> OrderedDict(sorted(d.items(), key=lambda t: len(t[0])))
OrderedDict([('pear', 1), ('apple', 4), ('orange', 2), ('banana', 3)])

41

Course Organization
PythonType Casting

Cast numerical values as different kinds of numerical values.
>>> x = int(3.0)
>>> y = float(3)

Cast a list as a set and vice versa.
>>> set([1, 2, 3, 4, 4])
{1, 2, 3, 4}
>>> list({'a', 'a', 'b', 'b', 'c'})
['a', 'c', 'b']

Cast other objects as strings.
>>> str(['a', str(1), 'b', float(2)])
"['a', '1', 'b', 2.0]"

42

Course Organization
PythonOutline

1. Course Organization

2. Python
Basics
Data Structures
Control Flow Tools
Standard Library
Object Oriented Programming
Type Annotations

43

Course Organization
PythonThe If Statement

>>> food = "bagel"
>>> if food == "apple": # As with functions, the colon denotes
... print("72 calories") # the start of each code block.
... elif food == "banana" or food == "carrot":
... print("105 calories")
... else:
... print("calorie count unavailable")
...
calorie count unavailable

44

Course Organization
PythonStructural pattern matching (switch)

from Python 3.10

lang = input("What's the programming language you want to learn? ")

match lang:
case "JavaScript":

print("You can become a web developer.")

case "Python":
print("You can become a Data Scientist")

case "PHP":
print("You can become a backend developer")

case "Solidity":
print("You can become a Blockchain developer")

case "Java":
print("You can become a mobile app developer")

case _:
print("The language doesn't matter, what matters is solving problems.")

45

Course Organization
PythonThe While Loop

>>> i = 0
>>> while True: # i < 10
... print(i, end=' ')
... i += 1
... if i >= 10:
... break # Exit the loop.
...
0 1 2 3 4 5 6 7 8 9

>>> i = 0
>>> while i < 10:
... i += 1
... if i % 3 == 0:
... continue # Skip multiples of 3.
... print(i, end=' ')
1 2 4 5 7 8 10

46

Course Organization
PythonThe For Loop

A for loop iterates over the items in any iterable.

Iterables include (but are not limited to) strings, lists, sets, and dictionaries.

>>> colors = ["red", "green", "blue", "yellow"]
>>> for entry in colors:
... print(entry + "!")
...
red!
green!
blue!
yellow!

The break and continue statements also work in for loops

but a continue in a for loop will automatically increment the index or item

47

Course Organization
PythonBuilt-in Functions

1 range(start, stop, step): Produces a sequence of integers, following slicing syntax.
2 zip(): Joins multiple sequences so they can be iterated over simultaneously.
3 enumerate(): Yields both a count and a value from the sequence. Typically used to get

both the index of an item and the actual item simultaneously.
4 reversed(): Reverses the order of the iteration.
5 sorted(): Returns a new list of sorted items that can then be used for iteration.

Iterate through the list in sorted (alphabetical) order.
>>> for item in sorted(colors):
... print(item, end=' ')
...
blue purple red white yellow

They (except for sorted()) are generators and return an iterator.
To put the items of the sequence in a collection, use list(), set(), or tuple().

48

Course Organization
PythonGenerators

Useful to iterate over a potentially large sequence of values without having to store them all in
memory at once. Generate values on-the-fly.

(expression for x in iterable if condition)

>>> nums = [1, 2, 3, 4, 5, 6]
>>> squares = (i*i for i in nums)
>>> squares
<generator object <genexpr> at 0x110468200>
>>> for n in squares:

print(n)
1
4
9
16
25
36

49

Course Organization
PythonGenerators via yield

yield used in generator functions to create iterators.

def count_up_to(limit):
count = 1
while count <= limit:

yield count
count += 1

Using the generator function
for num in count_up_to(5):

print(num)

counter = count_up_to(3)
print(next(counter)) # Output: 1
print(next(counter)) # Output: 2
print(next(counter)) # Output: 3

50

Course Organization
PythonList Comprehension

>>> loop_output = []
>>> for i in range(5):
... loop_output.append(i**2)
...
>>> list_output = [i**2 for i in range(5)]

[expression for x in iterable if conditions] # list
{ expression for x in iterable if conditions } # set
{ key: val for key, val in iterable if conditions } # dict

>>> colors = ["red", "blue", "yellow"]
>>> {"bright " + c for c in colors}
{'bright blue', 'bright red', 'bright yellow'}

>>> {c[0]:c for c in colors}
{'y': 'yellow', 'r': 'red', 'b': 'blue'}

51

Course Organization
PythonDecorators — Function Wrappers

>>> def typewriter(func):
... """Decorator for printing the type of output a function returns"""
... def wrapper(*args, **kwargs):
... output = func(*args, **kwargs) # Call the decorated function.
... print("output type:", type(output)) # Process before finishing.
... return output # Return the function output.
... return wrapper

>>> @typewriter
... def combine(a, b, c):
... return a*b // c

>>> combine = typewriter(combine)

Now calling combine() actually calls wrapper(), which then calls the original combine().

>>> combine(3, 4, 6)
output type: <class 'int'>
2
>>> combine(3.0, 4, 6)
output type: <class 'float'>
2.0

52

Course Organization
PythonDecorators — Function Wrappers

>>> def repeat(times):
... """Decorator for calling a function several times."""
... def decorator(func):
... def wrapper(*args, **kwargs):
... for _ in range(times):
... output = func(*args, **kwargs)
... return output
... return wrapper
... return decorator
...
>>> @repeat(3)
... def hello_world():
... print("Hello, world!")
...
>>> hello_world()
Hello, world!
Hello, world!
Hello, world!

53

Course Organization
PythonOutline

1. Course Organization

2. Python
Basics
Data Structures
Control Flow Tools
Standard Library
Object Oriented Programming
Type Annotations

54

Course Organization
PythonBuilt-in Functions

Common built-in functions for numerical calculations:

Function Returns
input() Gets input from console
abs() The absolute value of a real number, or the magnitude

of a complex number.
min() The smallest element of a single iterable, or the smallest

of several arguments. Strings are compared based on
lexicographical order: numerical characters first, then
upper-case letters, then lower-case letters.

max() The largest element of a single iterable, or the largest
of several arguments.

len() The number of items of a sequence or collection.
round() A float rounded to a given precision in decimal digits.
sum() The sum of a sequence of numbers.

See https://docs.python.org/3/library/functions.html for more detailed
documentation on all of Python’s built-in functions.

55

https://docs.python.org/3/library/functions.html

Course Organization
PythonBuilt-in Functions

Function Description
all() Return True if bool(entry) evaluates to True for every entry in

the input iterable.
any() Return True if bool(entry) evaluates to True for any entry in the

input iterable.
bool() Evaluate a single input object as True or False.
eval() Execute a string as Python code and return the output.
map() Apply a function to every item of the input iterable and return

an iterable of the results.
filter() Apply a filter to the elements of the input iterable and return

an set.

56

Course Organization
PythonModules

A module is a Python file containing code that is meant to be used in some other setting
All import statements should occur at the top of the file, below the header but before any
other code.

1 import <module> makes the specified module available under the alias of its own name.

>>> import math # The name 'math' now gives
>>> math.sqrt(2) # access to the math module.
1.4142135623730951

2 import <module> as <name> creates an alias for an imported module. The alias is added to
the current namespace, but the module name itself is not.

>>> import numpy as np # The name 'np' gives access to the numpy
>>> np.sqrt(2) # module, but the name 'numpy' does not.
1.4142135623730951
>>> numpy.sqrt(2)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'numpy' is not defined

57

Course Organization
PythonModules

3. from <module> import <<<object>>> loads the specified object into the namespace without
loading anything else in the module or the module name itself. This is used most often to
access specific functions from a module. The as statement can also be tacked on to create
an alias.

>>> from random import randint # The name 'randint' gives access to the
>>> r = randint(0, 10000) # randint() function, but the rest of
>>> random.seed(r) # the random module is unavailable.
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'random' is not defined

58

Course Organization
PythonRunning and Importing

example1.py

data = list(range(4))
def display():

print("Data:", data)

if __name__ == "__main__":
display()
print("This file was executed from the command line or an interpreter.")

else:
print("This file was imported.")

$ python example1.py
Data: [0, 1, 2, 3]
This file was executed from the command line or an interpreter.

59

Course Organization
PythonThe Python Standard Library

Module Description
cmath Mathematical functions for complex numbers.
csv Comma Separated Value (CSV) file parsing and writing.

itertools Tools for iterating through sequences in useful ways.
math Standard mathematical functions and constants.
sys Tools for interacting with the interpreter.
os Tools for interacting with the operating system.

pathlib Tools for interacting with the interpreter.
string Common string literals.
random Random variable generators.

functools Tools for higher-order functions: functions that act on or return other functions.
time Time value generation and manipulation.

timeit Measuring execution time of small code snippets.
argparse Parsing command line parameters.

Explore the documentation

60

Course Organization
PythonPython Packages

A package is simply a folder that contains a file called __init__.py.

This file is always executed first whenever the package is used.

A package must also have a file called __main__.py in order to be executable.

Executing the package will run __init__.py and then __main__.py

Importing the package will only run __init__.py

Use from <subpackage.module> import <<<object>>> to load a module within a subpackage.

Once a name has been loaded into a package’s __init__.py, other files in the same
package can load the same name with from . import <<<object>>> or
from name_package.file_name import <<<object>>>.

61

Course Organization
PythonPython Packages

File pyproject.toml contains build system requirements

[build-system]
requires = ["flit_core>=3.4"]
build-backend = "flit_core.buildapi"

[project]
name = "examino"
version = "0.0.1"
authors = [{ name="Marco Chiarandini", email="marco@imada.sdu.dk" },]
description = "A program to schedule exams"
readme = "README.md"
requires-python = ">=3.7"
classifiers = [

"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License"]

[project.urls]
"Homepage" = "https://git.imada.sdu.dk/march/Exams"
"Bug Tracker" = "https://git.imada.sdu.dk/march/Exams/issues"

62

Course Organization
PythonPython Packages

Generate requirements file: pipreqs src/examino or pip freeze > requirements.txt

Install a package from the public repository https://pypi.org/ using:
Package Installer for Python, pip

$ pip3 install -r requirements.txt
$ pip3 install -e . # . the local package, -e makes the installation editable
$ pip3 list # lists the packages instlled

To execute a package, run Python from the shell with the flag -m (for “module-name”) and
exclude the extension .py.

$ python -m package_name

A good idea to use a Python Virtual Environment

$ python -m venv venv
$. bin/activate
$ deactivate

See https://docs.python.org/3/tutorial/modules.html#packages for more.
63

https://pypi.org/
https://docs.python.org/3/tutorial/modules.html#packages

Course Organization
PythonMutable vs Immutable Objects

a mutable object can be changed after it is created, and an immutable object can’t.
Objects of built-in types like (int, float, bool, str, tuple, unicode) are immutable
Objects of built-in types like (list, set, dict) are mutable

>>> x = "Holberton"
>>> y = "Holberton"
>>> id(x)
140135852055856
>>> id(y)
140135852055856
>>> print(x is y) '''comparing the types'''
True

>>> a = 50
>>> type(a)
<class: 'int'>
>>> b = "Holberton"
>>> type(b)
<class: 'string'>

64

Course Organization
PythonMutable vs Immutable Objects

>>> holy = {"moly": 1.99, "hand_grenade": 3, "grail": 1975.41}
>>> tax_prices = holy # Try to make a copy for processing.
>>> for item, price in tax_prices.items():
... # Add a 7 percent tax, rounded to the nearest cent.
... tax_prices[item] = round(1.07 * price, 2)
...
Now the base prices have been updated to the total price.
>>> print(tax_prices)
{'moly': 2.13, 'hand_grenade': 3.21, 'grail': 2113.69}

However, dictionaries are mutable, so 'holy' and 'tax_prices' actually
refer to the same object. The original base prices have been lost.
>>> print(holy)
{'moly': 2.13, 'hand_grenade': 3.21, 'grail': 2113.69}

To avoid this problem, explicitly create a copy of the object by casting it as a new structure.

>>> tax_prices = dict(holy)

65

Course Organization
PythonPass by-value or by-reference

A pointer refers to a variable by storing the address in memory where the corresponding
object is stored.

Python names are essentially pointers, and traditional pointer operations and cleanup are
done automatically.

Python automatically deletes objects in memory that have no names assigned to them (no
pointers referring to them). This feature is called garbage collection.

All mutable objects that are arguments of functions are passed by reference while
immutable objects are passed by value.

66

Course Organization
PythonShallow vs Deep Copy

67

Course Organization
PythonOutline

1. Course Organization

2. Python
Basics
Data Structures
Control Flow Tools
Standard Library
Object Oriented Programming
Type Annotations

68

Course Organization
PythonClasses

A class is a template for an object that binds together specified variables and routines.

class Backpack:
"""A Backpack object class. Has a name and a list of contents.

Attributes:
name (str): the name of the backpack's owner.
contents (list): the contents of the backpack.

"""
def __init__(self, name): # This function is the constructor.

"""Set the name and initialize an empty list of contents.

Parameters:
name (str): the name of the backpack's owner.

"""
self.name = name # Initialize some attributes.
self.contents = []

69

Course Organization
PythonInstantiation

Import the Backpack class and instantiate an object called 'my_backpack'.
>>> from object_oriented import Backpack
>>> my_backpack = Backpack("Fred")
>>> type(my_backpack)
<class 'object_oriented.Backpack'>

Access the object's attributes with a period and the attribute name.
>>> print(my_backpack.name, my_backpack.contents)
Fred []

The object's attributes can be modified after instantiation.
>>> my_backpack.name = "George"
>>> print(my_backpack.name, my_backpack.contents)
George []

70

Course Organization
PythonMethods

class Backpack:
...
def put(self, item):

"""Add an item to the backpack's list of contents."""
self.contents.append(item) # Use 'self.contents', not just 'contents'.

def take(self, item):
"""Remove an item from the backpack's list of contents."""
self.contents.remove(item)

>>> my_backpack.put("notebook") # my_backpack is passed implicitly to
>>> my_backpack.put("pencils") # Backpack.put() as the first argument.
>>> my_backpack.contents
['notebook', 'pencils']

Remove an item from the backpack. # This is equivalent to
>>> my_backpack.take("pencils") # Backpack.take(my_backpack, "pencils")
>>> my_backpack.contents
['notebook']

71

Course Organization
PythonInheritance

Superclass ⇝ Subclass

class Knapsack(Backpack): # Inherit from the Backpack class in the class ↪→
↪→definition
"""Attributes:

name (str): the name of the knapsack's owner.
color (str): the color of the knapsack.
max_size (int): the maximum number of items that can fit inside.
contents (list): the contents of the backpack.
closed (bool): whether or not the knapsack is tied shut.

"""
def __init__(self, name, color, max_size=3):

"""Use the Backpack constructor to initialize the name, color,
and max_size attributes. A knapsack only holds 3 items by default.
"""
Backpack.__init__(self, name, color, max_size)
self.closed = True

72

Course Organization
PythonInheritance

all methods defined in the superclass class are available to instances of the subclass.
methods from the superclass can be changed for the subclass by override
New methods can be included normally.

>>> from object_oriented import Knapsack
>>> my_knapsack = Knapsack("Brady", "brown")

A Knapsack is a Backpack, but a Backpack is not a Knapsack.
>>> print(issubclass(Knapsack, Backpack), issubclass(Backpack, Knapsack))
True False
>>> isinstance(my_knapsack, Knapsack) and isinstance(my_knapsack, Backpack)
True

The Knapsack class has a weight() method, but the Backpack class does not.
>>> print(hasattr(my_knapsack, 'weight'), hasattr(my_backpack, 'weight'))
True False

73

Course Organization
PythonSpecial Methods

special methods used to make an object behave like a built-in data type.
begin and end with two underscores, like the constructor __init__().
all variables and routines of a class are public
magic methods are hidden

In [1]: %run object_oriented.py
In [2]: b = Backpack("Oscar", "green")
In [3]: b. # Press 'tab' to see standard methods and attributes.

color max_size take()
contents name
dump() put()

In [3]: b.__ # Press 'tab' to see special methods and hidden attributes.
__getattribute__ _ _new__() __class__
__delattr__ __hash__ __reduce_ex__()
__dict__ __init__() __repr__
__dir__() __init_subclass__() __setattr__
__doc__ __sizeof__() __reduce__()
__str__ __format__() __module__
__subclasshook__() __weakref__

74

Course Organization
PythonSpecial Methods

Method Arithmetic Operator
__add__() +
__sub__() -
__mul__() *
__pow__() **

__truediv__() /
__floordiv__() //

Method Comparison Operator
__lt__() <
__le__() <=
__gt__() >
__ge__() >=
__eq__() ==
__ne__() =

Operator overloading:

class Backpack:
def __add__(self, other):

return len(self.contents) + len(other.contents)

class Backpack(object)
def __lt__(self, other):

return len(self.contents) < len(other.contents)

75

Course Organization
PythonStatic Attributes and Methods

Static attributes and methods are defined without self and can be accessed both with and
without instantiation

class Backpack:
...
brand = "Adidas" # Backpack.brand is a static attribute.

class Backpack:
...
@staticmethod
def origin(): # Do not use 'self' as a parameter.

print("Manufactured by " + Backpack.brand + ", inc.")

76

Course Organization
PythonGetters, Setters and Deleters

Attributes that start by underscore are private
the decorator @property is used to define getters, setters, and deleters.
by defining properties, you can change the internal implementation of a class without
affecting the interface, so you can add getters, setters, and deleters that act as
intermediaries “behind the scenes” to avoid accessing or modifying the data directly.

class House:
def __init__(self, price):

self._price = price

@property
def price(self):

return self._price

@price.deleter
def price(self):

del self._price

@price.setter
def price(self, new_price):

if new_price > 0 and isinstance(↪→
↪→new_price, float):

self._price = new_price
else:

print("Please enter a valid price")

>>> house = House(50000.0) # Create
>>> house.price # Access value
>>> house.price = 45000.0 # Update value
>>> del house.price # Delete attribute

77

Course Organization
PythonMore Special Methods and Hashing

Method Operation Trigger Function
__bool__() Truth value bool()
__len__() Object length or size len()

__repr__() Object representation repr()
__getitem__() Indexing and slicing self[index]
__setitem__() Assignment via indexing self[index] = x

__iter__() Iteration over the object iter()
__reversed__() Reverse iteration over the object reversed()
__contains__() Membership testing in

A hash value is an integer that uniquely identifies an object.
If the __hash__() method is not defined, the default hash value is the object’s memory address
(accessible via the built-in function id()) divided by 16, rounded down to the nearest integer.

class Backpack:
def __hash__(self):

return hash(self.name) ^ hash(self.color) ^ hash(len(self.contents))

78

Course Organization
PythonOutline

1. Course Organization

2. Python
Basics
Data Structures
Control Flow Tools
Standard Library
Object Oriented Programming
Type Annotations

79

Course Organization
PythonType Annotations

Statically typed: type checking at compile-time; requires datatype declarations.

Dynamically typed: type checking at runtime; does not require datatype declarations.
Python is dynamically typed. Type annotations are used to indicate the datatypes of variables
and input/outputs of functions and methods.

This is how you declare the type of a variable type in Python 3.6
age: int = 1

You don't need to initialize a variable to annotate it
a: int # Ok (no value at runtime until assigned)

The latter is useful in conditional branches
child: bool
if age < 18:

child = True
else:

child = False

80

Course Organization
PythonBuilt-in Types (I)

For simple built-in types, just use the name of the type
x: int = 1
x: float = 1.0
x: bool = True
x: str = "test"
x: bytes = b"test"

For collections, the type of the collection item is in brackets
(Python 3.9+)
x: list[int] = [1]
x: set[int] = {6, 7}
In Python 3.8 and earlier, the name of the collection type is
capitalized, and the type is imported from the 'typing' module
from typing import List, Set, Dict, Tuple, Optional
x: List[int] = [1]
x: Set[int] = {6, 7}

81

Course Organization
PythonBuilt-in Types (II)

from typing import List, Set, Dict, Tuple, Optional
For mappings, we need the types of both keys and values
x: dict[str, float] = {"field": 2.0} # Python 3.9+
x: Dict[str, float] = {"field": 2.0}

For tuples of fixed size, we specify the types of all the elements
x: tuple[int, str, float] = (3, "yes", 7.5) # Python 3.9+
x: Tuple[int, str, float] = (3, "yes", 7.5)

For tuples of variable size, we use one type and ellipsis
x: tuple[int, ...] = (1, 2, 3) # Python 3.9+
x: Tuple[int, ...] = (1, 2, 3)

Use Optional[] for values that could be None
x: None | str = some_function()
x: Optional[str] = some_function()

82

Course Organization
PythonTypes in Functions

def add(x: int, y: int) -> int:
return x + y

To allow multiple datatypes, we can use type union operators. Pre-Python 3.10 this would look
like:

from typing import Union
def add(x: Union[int, float], y: Union[int, float]) -> Union[int, float]:

return x + y

Here, we allow either int or float datatypes!
With Python 3.10, we can replace Union with the new union operator |:

def add(x: int | float, y: int | float) -> int | float:
return x + y

83

Course Organization
PythonType Checking

Python does not check types but IDE do and can provide warnings. From command line we can
use the mypy tool

pip install mypy
mypy main.py

Mypy understands a value can't be None in an if-statement
if x is not None:

print(x.upper())
If a value can never be None due to some invariants, use an assert
assert x is not None
print(x.upper())

84

Course Organization
PythonSummary

1. Course Organization

2. Python
Basics
Data Structures
Control Flow Tools
Standard Library
Object Oriented Programming
Type Annotations

85

	Course Organization
	Python
	Basics
	Data Structures
	Control Flow Tools
	Standard Library
	Object Oriented Programming
	Type Annotations

