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Linear Programming

Consider the primal form in linear programming:

maximize ¢’ x
subjectto Ax < b
x>0

And the corresponding dual problem:
minimize b’y
subjectto ATy <c¢
y=>0



Linear Programming

Both problems can be converted into equality form:

maximize c¢'x
subjectto Ax+w=0>b
x,w >0

And:
minimize b’y
subjectto ATy +4+z=c
y,220



Simplex algorithm

Simplex Method finds the optimal solution by traversing
along the edges from one vertex to another.

End




Interior Point method

. . a =oc by p=1
The Interior Point method starts inside the polytope and @ b

iteratively converges to the optimal solution .

(e) u=0.01 (d) central path



Non-standard notation

Non-standard notation ahead! Given a lower-case letter denoting a vector quantity, we also
have an upper-case letter denoting a diagonal matrix whose entries corresponds to elements the
vector quantity.

X1 X1
X2 X2



Barrier function

» How do we avoid converging outside the feasibility region?
» Barrier problem:

maximize c¢'x + MZJ' log xj + iy _; log w;

BP(1) - subject to Ax+w=05b

» Nonlinear objective function: logarithmic barrier function

» Family of problems indexed by parameter > 0



Lagrange Multipliers and Barrier Problem

We Lagrange relax to the barrier function, we get the following problem:

L(x,w,y) = ch—i—,uZIong+uZIogW;+yT(b—Ax— w)
R i

We get the first-order optimality conditions when we take the derivatives and set them to zero.

oL
87)(JZCJ+M Zyiau :07 J:1727 , N
L 1
83 =p— =N 207 I_1727 , M
4 wj
L
0 —b,—Za;JxJ w; =0, i=1,2,...m



Lagrange Multipliers and Barrier Problem

This can be written in matrix form:

ATy —uXle=c¢
y=pWle
Ax+w=b>b

Note: X and W are the diagonal matrices containing diagonal entries.



Lagrange Multipliers and Barrier Problem

When we introduce an extra vector z = uX e, we can rewrite our first-order optimality
conditions like this:

Ax+w=>b

ATy —z=c¢
z=puX"le
y =pWle

Important! e is the vector of all ones.



Lagrange Multipliers and Barrier Problem

When we multiply X and W on respectively the third and fourth equation, we get the following

equations:
Ax+w=b>b
ATy —z=¢
XZe = ue

YWe = pe



Lagrange Multipliers and Barrier Problem

When we multiply X and W on respectively the third and fourth equation, we get the following

equations:
Ax+w=b>b
ATy —z=¢
XZe = ue
YWe = pe

Componentwise, the third and fourth equation can be written like this:

Xizj = [t j=12,..,n

Yiwi = p =12 ..m



Lagrange Multipliers and Barrier Problem

When we multiply X and W on respectively the third and fourth equation, we get the following

equations:
Ax+w=b>b
ATy —z=¢
XZe = ue
YWe = pe

Componentwise, the third and fourth equation can be written like this:

Xizj = [t j=12,..,n

Yiwi = p =12 ..m

u-complementarity conditions: 2n + 2m equations in 2n + 2m unknowns.

Does a solution exist and if so, is it unique?



Lagrange Multipliers and Barrier Problem

Theorem 1

There exists a solution to the barrier problem if and only if both the primal and the dual
feasible regions have nonempty interior.

Corollary 2

If a primal feasible set (or, for that matter, its dual) has a nonempty interior and is bounded,
then for each p > 0 there exists a unique solution

(Xua W;u)’uazu)
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Path-Following Method

1. Estimate appropriate value for p.

2. Compute step directions (Ax, Aw, Ay, Az) pointing at the point (X, wy, y,, z,) on the
central path.

3. Compute a new step length parameter 6 such that the new point:

X=x4+0Ax, y=y+0Ay
w=w+0Aw, Z=z4+0Az

4. Replace (x,w,y, z) with the new solution (%X, ¥, W, Z)



Path-Following Method
1. Estimating u

» We must find an appropriate value for p.
» Too high, we might converge to the analytic center of the feasible set.
» Too low, we will converge to the edge of the feasible set that might be suboptimal.
T T
Z' X+ w
_g2xtyTw

H n+m



Path-Following Method
2. Compute step directions (Ax, Aw, Ay, Az)

Recall the given equations defining the point (x,, w,, ¥, z,) on the central path:

Ax+w=0>b
ATy —z=c¢
XZe = e

YWe = pe



Path-Following Method
2. Compute step directions (Ax, Aw, Ay, Az)

Given a new point (x, + Ax,w,, + Aw, y, + Ay, z, + Az), we get the following equations:

Ax+ Ax)+ (w+Aw)=b

AT(y +Ay) —(z+Dz)=c
(X +AX)(Z+AZ)e = pe

(Y+AY)W + AW)e = pe



Path-Following Method
2. Compute step directions (Ax, Aw, Ay, Az)

We rewrite the equations so the unknowns are on the left and the data on the right:

AAx +Aw =b— Ax—w

ATAy —Az=c—ATy+z
ZAx + XAz + AXAZe = ne — XZe
WAy + YAw + AYAWe = pe — YWe



Path-Following Method
2. Compute step directions (Ax, Aw, Ay, Az)

Then we transform the equations into a linear system by dropping the nonlinear terms:

AAx+ Aw =b— Ax —w
ATAy —Az=c—ATy+z
ZAx + XAz = pe — XZe
WAy + YAw = pe — YWe



Path-Following Method

3. Compute a new step length parameter ¢

» Whenever we find the step direction, we need to determine the step length 6.
» Recall that we want to replace (x, w, y, z) with the new solution (X, 7, W, Z) by:

X=x+0Ax, y=y+60Ay

X
w=w+0Aw, Z=z4+0Az

The solution to this system of linear equation corresponds to the aplication of the Newton
method on the primal-dual equations and u-complementary equations.



Path-Following Method
3. Compute a new step length parameter ¢

» We need to guarantee that:

xi+0Ax>0, j=1,2,...,n



Path-Following Method
3. Compute a new step length parameter ¢

» We need to guarantee that:

xi+0Ax>0, j=1,2,...,n

» Similarly for w, y and z.



Path-Following Method
3. Compute a new step length parameter ¢

» We need to guarantee that:

xi+0Ax>0, j=1,2,...,n
» Similarly for w, y and z.

)

1 {AXJ _Awi Ay AZJ}

— = max
Xj Wi Yi Zj



Path-Following Method
3. Compute a new step length parameter 6

» We need to guarantee that:

xi+0Ax>0, j=1,2,...,n

» Similarly for w, y and z.

1 {AXJ _Awi Ay AZJ}

— = max
i Xj Wi Yi Zj

» We introduce a parameter r that is close to but strictly less than one.

Ax; i i 20N
9_,(max{_xf,_ﬂw,_ﬂy’_ﬂzf}> A1

i Xj w; Yi z



Path-Following Method
4. Replace (x,w,y, z) with (X, y, w, Z)

Now we can replace (x, w, y, z) with (X, 7, w, Z):

X=x+0Ax, y=y+0Ay
w=w+0Aw, Z=z40Az



Path-Following Method
Pseudo-code of the path-following method

initialize (z,w,y,z) > 0
while (not optimal) {
p=b—Ar —w
o=c— ATy +z
¥ = e + yTw
~y

n—+m
solve:

AAz+Aw  =p
ATAy—Az =0
ZAr+ XAz =pe— XZe
WAy +YAw=pe - YWe

-1
Az;  Aw;, Ay, Az
0 =r | max;; i B el 773}) Al

pn=2a

5 w; oy z;
z— r+ 0Ax, w— w+ 0Aw
Yy + 0Ay, ze— z+0Az




Optimality

» We have converged to a solution, but how do we know if it is optimal?



Optimality

» We have converged to a solution, but how do we know if it is optimal?

» Recall from the duality theory that we need to meet the following criteria for the solution
to be optimal:
Primal feasibility:
lplls = lIb—Ax — wl
Dual feasibility:
lolly = llc = ATy +z]|x

Complementarity:

v = sz—l—yTW



Optimality

When do we stop?

Let € > 0 be a small tolerance and M < oo be a large finite tolerance
||x]lcc > M then the primal problem is unbounded.

l¥|loo > M then the dual problem is unbounded.

vvyVvyyvyy

If |pll1 <€ |lo|l1 <€ and v < € then we found our optimal solution!
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Implementation example

Consider the following LP problem:

Primal problem: Dual problem:
max 5x; + 4xp + 3x3 max 5y; + 11y, + 8y3
st. 2x1+3x% +x3 <5 st. 2y1 +4y,+3,3<5
dxy + xo + 2x3 < 11 3yi+y2t+4y; <4
3x1 +4x +2x3 < 8 yi+2y+2y3<3

X1, X2,x3 > 0 y1,¥2,y3 >0



Implementation example

Both are converted into equality form:

Primal problem: Dual problem:
max 5x; + 4xp + 3x3 max 5y; + 11y, + 8y3
st. 2x1+3x%+x3+w; =5 st. 2y1+4y2+3y, +21 <5
dxy + X0 + 2x3 + wr = 11 3i+yvatd4ys+2<4
3x1 +4x0 + 2x3 + w3 = 8 Yi+2yp+4+2y3423 <3

X1, X2, X3, W1, Wa, w3 > 0 Y1,¥2,¥3,21,22,23 > 0



Implementation example

Recall that we are following the pseudo-code:

initialize (z,w,y,z) > 0
while (not optimal) {
p=b—Ar—w
o=c— ATy +z

¥ = Tx + yTw

n=2a
n+m
solve:
AAz+Aw  =p
ATAy — Az o
ZAr + XAz =pe— XZe

WAy +YAw=pe —YWe

0 = r | max;;

Az Aw; Ay

5 w; oy
z—r+ 0Ax, w— w+ 0Aw
Yy + 0Ay, z— z+0Az




Implementation example

Initialize (x, w, y, z) > 0 with arbitrary values:

0.1 0.1 0.1 0.1
x= 01|, w=|01],y=|01]|,z= |0.1
0.1 0.1 0.1 0.1



Implementation example

Initialize (x, w, y, z) > 0 with arbitrary values:

0.1 0.1 0.1
x= 101 ,w=|0.1],y= 01| ,z=
0.1 0.1 0.1

Then initialize b, ¢, A and AT



Implementation example

5 2,3,11 [o.1 0.1 4.3
p=b—Ax—w=|11| — |4,1,2| - |0.1| — |0.1| = |10.2
8 3,42 |01 0.1 7



Implementation example

p=b—Ax—w=

c=c—ATy+z=

w H~ O

5
11
8

[0.17

0.1
0.1

[0.1]

0.1
0.1

[0.1]

0.1
0.1

[0.17

0.1
0.1

(4.3

10.2

(4.2

3.3
2.6



Implementation example

5 2,3,11 Jo1] [o.1]l [43
p=b—Ax—w= [11| — [4,1,2] - [0.1| — |0.1| = |10.2
8| 3,42 |o1] |o1] |7
51 [2,4,3] [0.1] [o0.1] (4.2
oc=c—ATy+z=|4| —|3,1,4] - |0.1| + |0.1] = |33
3] [1,2,2] |o1] |o1] |26

0.1 0.1
y=z"x+y w=10.1,01,0.1] - |0.1| +[0.1,0.1,0.1] - |0.1| = 0.06
0.1 0.1



Implementation example

5 2,3,1] [0.1] [0.1]
p=b—Ax—w= |[11| — |4,1,2] - |0.1| — [0.1| =
8| [3.42 |01] |0.1]
51 [2,4,3] [0.1] [o0.1]
o=c—ATy+z=|4| —|3,1,4] - |01| + |0.1] =
3] [L22] |01] |0.1]
0.1
y=z"x+y w=10.1,01,0.1] - |0.1] + [0.1,0.1,0.1] -
0.1
v 0.06
-5 =0.1—— =0.001
b= m 343 000

Where § = 0.1, n=3 and m = 3.

(4.3

10.2

4.2
3.3

2.6

0.1
0.1
0.1

=0.06



Implementation example

Crucial part, we create our linear system of equations.
AAx+ Aw =p
ATAy —Az=0
ZAx + XAz = pe — XZe
WAy + YAw = pe — YWe

We define right-hand side first:

4.3 4.2 —0.009
rhsl = |10.2( ,rhs2 = |3.3| ,rhs3 = | —0.009 | rhs4 =
7 2.6 —0.009
0.1,0,0
Recall that X = [0,0.1,0(. Similarly for W, Y, and Z.
0,0,0.1

—0.009
—0.009
—0.009



Implementation example

Left-hand side, we define M1, M2, M3 and M4 that corresponds to the right-hand side.
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Implementation example

Using Python 3.10 and numpy 1.26.4, we solve the system using np.linalg.solve(M, rhs) to
retrieve the delta values:

2.011 —0.411 0.321 ~2.101
Ax = |—0.153| ,Aw = | 0.015 | ,Ay = |-0.105| ,Az = | 0.063
1.147 ~0.716 0.626 ~1.237

Then we retrieve 0:

Axi Aw; Ay, Az )\ *
e:r(max{_&,_W,_Y,_%}) Al

i Xj Wi Yi zj

= 0.043



Implementation example

New solution:

[0.1]
0.1
0.1}
[0.1]
0.1
0.1}
[0.1]
0.1
0.1}
[0.1]
0.1

0.1]

+0.011 -

+0.011 -

+0.011 -

+0.011 -

[2.011 ]
~0.153
| 1.147 |

[—0.411]
0.015
| —0.716

[0.321 ]
—0.105
| 0.626 |

[—2.101]
0.063

| —1.237]

[0.186]
0.093
0149

[0.082]
0.100
0.069 |

[0.114]
0.095
0.127 ]

[0.01]
0.103

10.047]



Implementation example

Is this the optimal solution?
Primal feasibility:

lpllx = 20.58
Dual feasibility:
llo|ly = 9.67
Complementarity:
~v = 0.068

As |Ipll1 > €, |lo]ls > € and v > €, we have not found an optimal solution yet. Therefore, we
continue on our second iteration with the new x, w, y and z values.
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The KKT System

Given a system of equations:

AAx+ Aw =p

ATAy —Az=0
ZAx 4+ XAz = pe — XZe
WAy + YAw = pe — YWe

o1

(o)}
~ ~— — —

~_~ o~~~
o



The KKT System

Given a system of equations:

AAx+ Aw =p (5)
ATAy —NAz=0 (6)
ZAx+ XAz = pe — XZe (7

WAy + YAw = pe — YWe (8)

In the previous example, it might be possible to solve a linear system of equations in a small
problem. But what if the problem is larger? We transform the system into a symmetric linear
system in matrix form:

-XZ~ 1t -1
A Az Ay | [ —pZle+x p
— AT Ax AW]_|: o pW=le —y
/ yw-1

This is the Karush-Kuhn-Tucker system (KKT system)



The Reduced KKT System

The KKT system can be reduced even further. We solve for Az and Aw in equations 7 and 8.

Az = X Ype — XZe — ZAx)
Aw = Y Hue — YWe — WAY)

Then we substitute Az and Aw into equations 5 and 6.

AAX — Y WAy =p—puY te+w
ATAy — X 1ZAx =0+ puXle—z

This gives us the following reduced KKT System.



The Reduced KKT System

-Y-'w A _ _
AT x-17 [Ay AX]:[b—AX—pY e c—ATy+puX 16]
The Reduced KKT System is still symmetric. However, we can keep reducing the system into

normal equations.



Normal Equations
Given the reduced KKT System:

AAX — Y WAy =p—puY le+w
ATAy — X 1ZAx=0+puXte—z

We solve for Ay in equation 9 and eliminate it from 10 OR
We solve for Ax in equation 10 and eliminate it from 9. We choose the latter.

Ax=-XZHc— ATy +uX"te— ATAy)

Then we eliminate Ax:

—(Y'W + AXZPAT)Ay = b— Ax — uY e
—AXZ Y c— ATy + uX"1te)

(10)



Normal Equations

» This gives us a system of normal equations in primal form.

» Similarly, if we choose the former option, we get a system of normal equations in dual
form.

» Problem: If A has a dense column, then we end up with a dense matrix which is difficult to
solve in primal form.

» Same problem if A has a dense row, which is also difficult to solve in dual form.

» Should we then use the reduced KKT matrix? Possible if the matrices are positive definite!
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