
Labs for
Foundations of Applied

Mathematics
Python Essentials

Jeffrey Humpherys & Tyler J. Jarvis, managing editors

List of Contributors

E. Evans
Brigham Young University
R. Evans
Brigham Young University
J. Grout
Drake University
J. Humpherys
Brigham Young University
T. Jarvis
Brigham Young University
J. Whitehead
Brigham Young University
J. Adams
Brigham Young University
J. Bejarano
Brigham Young University
Z. Boyd
Brigham Young University
M. Brown
Brigham Young University
A. Carr
Brigham Young University
T. Christensen
Brigham Young University
M. Cook
Brigham Young University
R. Dorff
Brigham Young University
B. Ehlert
Brigham Young University
M. Fabiano
Brigham Young University
A. Frandsen
Brigham Young University

K. Finlinson
Brigham Young University
J. Fisher
Brigham Young University
R. Fuhriman
Brigham Young University
S. Giddens
Brigham Young University
C. Gigena
Brigham Young University
M. Graham
Brigham Young University
F. Glines
Brigham Young University
C. Glover
Brigham Young University
M. Goodwin
Brigham Young University
R. Grout
Brigham Young University
D. Grundvig
Brigham Young University
J. Hendricks
Brigham Young University
A. Henriksen
Brigham Young University
I. Henriksen
Brigham Young University
C. Hettinger
Brigham Young University
S. Horst
Brigham Young University
K. Jacobson
Brigham Young University

i

ii List of Contributors

J. Leete
Brigham Young University

J. Lytle
Brigham Young University

R. McMurray
Brigham Young University

S. McQuarrie
Brigham Young University

D. Miller
Brigham Young University

J. Morrise
Brigham Young University

M. Morrise
Brigham Young University

A. Morrow
Brigham Young University

R. Murray
Brigham Young University

J. Nelson
Brigham Young University

E. Parkinson
Brigham Young University

M. Probst
Brigham Young University

M. Proudfoot
Brigham Young University

D. Reber
Brigham Young University

C. Robertson
Brigham Young University

M. Russell
Brigham Young University

R. Sandberg
Brigham Young University

C. Sawyer
Brigham Young University

M. Stauffer
Brigham Young University

J. Stewart
Brigham Young University

S. Suggs
Brigham Young University

A. Tate
Brigham Young University

T. Thompson
Brigham Young University

M. Victors
Brigham Young University

J. Webb
Brigham Young University

R. Webb
Brigham Young University

J. West
Brigham Young University

A. Zaitzeff
Brigham Young University

Preface

This lab manual is designed to accompany the textbook Foundations of Applied Mathematics
by Humpherys, Jarvis and Evans.

©This work is licensed under the Creative Commons Attribution 3.0 United States License.
You may copy, distribute, and display this copyrighted work only if you give credit to Dr. J. Humpherys.
All derivative works must include an attribution to Dr. J. Humpherys as the owner of this work as
well as the web address to

https://github.com/Foundations-of-Applied-Mathematics/Labs
as the original source of this work.
To view a copy of the Creative Commons Attribution 3.0 License, visit

http://creativecommons.org/licenses/by/3.0/us/
or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105,
USA.

iii

https://github.com/Foundations-of-Applied-Mathematics/Labs
http://creativecommons.org/licenses/by/3.0/us/

iv Preface

Contents

Preface iii

I Labs 1

1 Introduction to Python 3

2 The Standard Library 25

3 Object-oriented Programming 43

4 Introduction to NumPy 55

5 Introduction to Matplotlib 73

6 Exceptions and File Input/Output 87

7 Unit Testing 99

8 Profiling 113

9 Introduction to SymPy 129

10 Data Visualization 143

II Appendices 155

A Getting Started 157

B Installing and Managing Python 165

C NumPy Visual Guide 169

v

vi Contents

Part I

Labs

1

1 Introduction to Python

Lab Objective: Python is a powerful, general-purpose programming language. It can be used
interactively, allowing for very rapid development. Python has many powerful scientific computing
tools, making it an ideal language for applied and computational mathematics. In this introductory
lab we introduce Python syntax, data types, functions, and control flow tools. These Python basics
are an essential part of almost every problem you will solve and almost every program you will write.

Getting Started
Python is quickly gaining momentum as a fundamental tool in scientific computing. Python should
be already installed in Linux and MacOSX operating systems. Under Windows it is possible to
install Windows subsystem for Linux and thus proceeding as in a Linux environment. Alternatively,
it is possible to install Python via Anaconda. Anaconda is a free distribution service by Contin-
uum Analytics, Inc., that includes the cross-platform Python interpreter (the software that actually
executes Python code) and many Python libraries that are commonly used for applied and computa-
tional mathematics. To install Python via Anaconda, go to https://www.anaconda.com/download/,
download the installer for Python version 3.8.10 or above corresponding to your operating system,
and follow the on-screen instructions. Installing Python via Anaconda you may end up installing
Python twice in your system and you may loose track of which installation you are using, hence we
do not recommend this way. For more information on installing Python and various libraries, see
Appendix B.

Running Python

Python files are saved with a .py extension. For beginners, we strongly recommend using a simple text
editor for writing Python files. However, many free IDEs (Integrated Development Environments—
large applications that facilitate code development with some sophisticated tools) are also compatible
with Python. For now, the simpler the coding environment, the better.

A plain Python file looks similar to the following code.

filename.py
"""This is the file header.
The header contains basic information about the file.

3

https://www.anaconda.com/download/

4 Lab 1. Introduction to Python

"""

if __name__ == "__main__":
pass # 'pass' is a temporary placeholder.

The # character creates a single-line comment. Comments are ignored by the interpreter and
serve as annotations for the accompanying source code. A pair of three quotes, """ """ or ''' ''',
creates a multi-line string literal, which may also be used as a multi-line comment. A triple-quoted
string literal at the top of the file serves as the header for the file. The header typically identifies the
author and includes instructions on using the file. Executable Python code comes after the header.

Problem 1. Open the file named python_intro.py (or create the file in a text editor if you
don’t have it). Add your information to the header at the top, then add the following code.

if __name__ == "__main__":
print("Hello, world!") # Indent with four spaces (NOT a tab).

Open a command prompt (Terminal on Linux or Mac and Command Prompt or GitBash
on Windows) and navigate to the directory where the new file is saved. Use the command ls (or
DIR on Windows) to list the files and folders in the current directory, pwd (CD , on Windows)
to print the working directory, and cd to change directories.

$ pwd # Print the working directory.
/Users/Guest
$ ls # List the files and folders here.
Desktop Documents Downloads Pictures Music
$ cd Documents # Navigate to a different folder.
$ pwd
/Users/Guest/Documents
$ ls # Check to see that the file is here.
python_intro.py

Now the Python file can be executed with the following command:

$ python python_intro.py

If Hello, world! is displayed on the screen, you have just successfully executed your
first Python program!

IPython

Python can be run interactively using several interfaces. The most basic of these is the Python
interpreter. In this and subsequent labs, the triple brackets >>> indicate that the given code is being
executed one line at a time via the Python interpreter.

$ python # Start the Python interpreter.
>>> print("This is plain Python.") # Execute some code.

5

This is plain Python.

There are, however, more useful interfaces. Chief among these is IPython,1 which is included
with the Anaconda distribution. To execute a script in IPython, use the run command.

>>> exit() # Exit the Python interpreter.
$ ipython # Start IPython.

In [1]: print("This is IPython!") # Execute some code.
This is IPython!

In [2]: %run python_intro.py # Run a particular Python script.
Hello, world!

One of the biggest advantages of IPython is that it supports object introspection, whereas the
regular Python interpreter does not. Object introspection quickly reveals all methods and attributes
associated with an object. IPython also has a built-in help() function that provides interactive help.

A list is a basic Python data structure. To see the methods associated with
a list, type the object name (list), followed by a period, and press tab.
In [1]: list. # Press 'tab'.

append() count() insert() remove()
clear() extend() mro() reverse()
copy() index() pop() sort()

To learn more about a specific method, use a '?' and hit 'Enter'.
In [1]: list.append?
Docstring: L.append(object) -> None -- append object to end
Type: method_descriptor

In [2]: help() # Start IPython's interactive help utility.

help> list # Get documentation on the list class.
Help on class list in module __builtin__:

class list(object)
| list() -> new empty list
| # ... # Press 'q' to exit the info screen.

help> quit # End the interactive help session.

Note

1See https://ipython.org/.

https://ipython.org/

6 Lab 1. Introduction to Python

Use IPython side-by-side with a text editor to test syntax and small code snippets quickly.
Testing small pieces of code in IPython before putting it into a program reveals errors and
greatly speeds up the coding process. Consult the internet with questions; stackoverflow.com
is a particularly valuable resource for answering common programming questions.

The best way to learn a new coding language is by actually writing code. Follow along
with the examples in the yellow code boxes in this lab by executing them in an IPython console.
Avoid copy and paste for now; your fingers need to learn the language as well.

Python Basics

Arithmetic

Python can be used as a calculator with the regular +, -, *, and / operators. Use ** for exponentiation
and % for modular division.

>>> 3**2 + 2*5 # Python obeys the order of operations.
19

>>> 13 % 3 # The modulo operator % calculates the
1 # remainder: 13 = (3*4) + 1.

In most Python interpreters, the underscore character _ is a variable with the value of the
previous command’s output, like the ANS button on many calculators.

>>> 12 * 3
36
>>> _ / 4
9.0

Data comparisons like < and > act as expected. The == operator checks for numerical equality
and the <= and >= operators correspond to ≤ and ≥, respectively. To connect multiple boolean
expressions, use the operators and, or, and not.2

>>> 3 > 2.99
True
>>> 1.0 <= 1 or 2 > 3
True
>>> 7 == 7 and not 4 < 4
True

>>> True and True and True and True and True and False
False
>>> False or False or False or False or False or True
True
>>> True or not True

2In many other programming languages, the and, or, and not operators are written as &&, ||, and !, respectively.
Python’s convention is much more readable and does not require parentheses.

http://stackoverflow.com/

7

True

Variables

Variables are used to temporarily store data. A single equals sign = assigns one or more values (on
the right) to one or more variable names (on the left). A double equals sign == is a comparison
operator that returns True or False, as in the previous code block.

Unlike many programming languages, Python does not require a variable’s data type to be
specified upon initialization. Because of this, Python is called a dynamically typed language.

>>> x = 12 # Initialize x with the integer 12.
>>> y = 2 * 6 # Initialize y with the integer 2*6 = 12.
>>> x == y # Compare the two variable values.
True

>>> x, y = 2, 4 # Give both x and y new values in one line.
>>> x == y
False

Functions

To define a function, use the def keyword followed by the function name, a parenthesized list of
parameters, and a colon. Then indent the function body using exactly four spaces.

>>> def add(x, y):
... return x + y # Indent with four spaces.

Achtung!

Many other languages use the curly braces {} to delimit blocks, but Python uses whitespace
indentation. In fact, whitespace is essentially the only thing that Python is particularly picky
about compared to other languages: mixing tabs and spaces confuses the interpreter
and causes problems. Most text editors have a setting to set the indentation type to spaces
so you can use the tab key on your keyboard to insert four spaces (sometimes called soft tabs).
For consistency, never use tabs; always use spaces.

Functions are defined with parameters and called with arguments, though the terms are often
used interchangeably. Below, width and height are parameters for the function area(). The values
2 and 5 are the arguments that are passed when calling the function.

>>> def area(width, height): # Define the function.
... return width * height
...
>>> area(2, 5) # Call the function.
10

8 Lab 1. Introduction to Python

Python functions can also return multiple values.

>>> def arithmetic(a, b):
... return a - b, a * b # Separate return values with commas.
...
>>> x, y = arithmetic(5, 2) # Unpack the returns into two variables.
>>> print(x, y)
3 10

The keyword lambda is a shortcut for creating one-line functions. For example, the polynomials
f(x) = 6x3 + 4x2 − x+ 3 and g(x, y, z) = x+ y2 − z3 can be defined as functions in one line each.

Define the polynomials the usual way using 'def'.
>>> def f(x):
... return 6*x**3 + 4*x**2 - x + 3
>>> def g(x, y, z):
... return x + y**2 - z**3

Equivalently, define the polynomials quickly using 'lambda'.
>>> f = lambda x: 6*x**3 + 4*x**2 - x + 3
>>> g = lambda x, y, z: x + y**2 - z**3

Note

Documentation is important in every programming language. Every function should have a
docstring—a string literal in triple quotes just under the function declaration—that describes
the purpose of the function, the expected inputs and return values, and any other notes that
are important to the user. Short docstrings are acceptable for very simple functions, but more
complicated functions require careful and detailed explanations.

>>> def add(x, y):
... """Return the sum of the two inputs."""
... return x + y

>>> def area(width, height):
... """Return the area of the rectangle with the specified width
... and height.
... """
... return width * height
...
>>> def arithmetic(a, b):
... """Return the difference and the product of the two inputs."""
... return a - b, a * b

9

Lambda functions cannot have custom docstrings, so the lambda keyword should be only
be used as a shortcut for very simple or intuitive functions that need no additional labeling.

Problem 2. The volume of a sphere with radius r is V = 4
3πr

3. In your Python file from
Problem 1, define a function called sphere_volume() that accepts a single parameter r. Return
the volume of the sphere of radius r, using 3.14159 as an approximation for π (for now). Also
write an appropriate docstring for your function.

To test your function, call it under the if __name__ == "__main__" clause and print the
returned value. Run your file to see if your answer is what you expect it to be.

Achtung!

The return statement instantly ends the function call and passes the return value to the
function caller. However, functions are not required to have a return statement. A function
without a return statement implicitly returns the Python constant None, which is similar to
the special value null of many other languages. Calling print() at the end of a function does
not cause a function to return any values.

>>> def oops(i):
... """Increment i (but forget to return anything)."""
... print(i + 1)
...
>>> def increment(i):
... """Increment i."""
... return i + 1
...
>>> x = oops(1999) # x contains 'None' since oops()
2000 # doesn't have a return statement.
>>> y = increment(1999) # However, y contains a value.
>>> print(x, y)
None 2000

If you have any intention of using the results of a function, use a return statement.

It is also possible to specify default values for a function’s parameters. In the following example,
the function pad() has three parameters, and the value of c defaults to 0. If it is not specified in the
function call, the variable c will contain the value 0 when the function is executed.

>>> def pad(a, b, c=0):
... """Print the arguments, plus an zero if c is not specified."""
... print(a, b, c)
...
>>> pad(1, 2, 3) # Specify each parameter.
1 2 3

10 Lab 1. Introduction to Python

>>> pad(1, 2) # Specify only non-default parameters.
1 2 0

Arguments are passed to functions based on position or name, and positional arguments must
be defined before named arguments. For example, a and b must come before c in the function
definition of pad(). Examine the following code blocks demonstrating how positional and named
arguments are used to call a function.

Try defining printer with a named argument before a positional argument.
>>> def pad(c=0, a, b):
... print(a, b, c)
...
SyntaxError: non-default argument follows default argument

Correctly define pad() with the named argument after positional arguments.
>>> def pad(a, b, c=0):
... """Print the arguments, plus an zero if c is not specified."""
... print(a, b, c)
...

Call pad() with 3 positional arguments.
>>> pad(2, 4, 6)
2 4 6

Call pad() with 3 named arguments. Note the change in order.
>>> pad(b=3, c=5, a=7)
7 3 5

Call pad() with 2 named arguments, excluding c.
>>> pad(b=1, a=2)
2 1 0

Call pad() with 1 positional argument and 2 named arguments.
>>> pad(1, c=2, b=3)
1 3 2

Problem 3. The built-in print() function has the useful keyword arguments sep and end.
It accepts any number of positional arguments and prints them out with sep inserted between
values (defaulting to a space), then prints end (defaulting to the newline character '\n').

Write a function called isolate() that accepts five arguments. Print the first three
separated by 5 spaces, then print the rest with a single space between each output. For example,

>>> isolate(1, 2, 3, 4, 5)
1 2 3 4 5

11

Achtung!

In previous versions of Python, print() was a statement (like return), not a function, and
could therefore be executed without parentheses. However, it lacked keyword arguments like
sep and end. If you are using Python 2.7, include the following line at the top of the file to
turn the print statement into the new print() function.

>>> from __future__ import print_function

Data Types and Structures
Numerical Types

Python has four numerical data types: int, long, float, and complex. Each stores a different kind
of number. The built-in function type() identifies an object’s data type.

>>> type(3) # Numbers without periods are integers.
int

>>> type(3.0) # Floats have periods (3. is also a float).
float

Python has two types of division: integer and float. The / operator performs float division
(true fractional division), and the // operator performs integer division, which rounds the result
down to the next integer. If both operands for // are integers, the result will be an int. If one or
both operands are floats, the result will be a float. Regular division with / always returns a float.

>>> 15 / 4 # Float division performs as expected.
3.75
>>> 15 // 4 # Integer division rounds the result down.
3
>>> 15. // 4
3.0

Achtung!

12 Lab 1. Introduction to Python

In previous versions of Python, using / with two integers performed integer division, even in
cases where the division was not even. This can result in some incredibly subtle and frustrating
errors. If you are using Python 2.7, always include a . on the operands or cast at least one as
a float when you want float division.

PYTHON 2.7
>>> 15 / 4 # The answer should be 3.75, but the
3 # interpreter does integer division!

>>> 15. / float(4) # 15. and float(4) are both floats, so
3.75 # the interpreter does float division.

Alternatively, including the following line at the top of the file redefines the / and // operators
so they are handled the same way as in Python 3.

>>> from __future__ import division

Python also supports complex numbers computations by pairing two numbers as the real and
imaginary parts. Use the letter j, not i, for the imaginary part.

>>> x = complex(2,3) # Create a complex number this way...
>>> y = 4 + 5j # ...or this way, using j (not i).
>>> x.real # Access the real part of x.
2.0
>>> y.imag # Access the imaginary part of y.
5.0

Strings

In Python, strings are created with either single or double quotes. To concatenate two or more
strings, use the + operator between string variables or literals.

>>> str1 = "Hello"
>>> str2 = 'world'
>>> my_string = str1 + " " + str2 + '!'
>>> my_string
'Hello world!'

Parts of a string can be accessed using slicing, indicated by square brackets []. Slicing syntax
is [start:stop:step]. The parameters start and stop default to the beginning and end of the
string, respectively. The parameter step defaults to 1.

>>> my_string = "Hello world!"
>>> my_string[4] # Indexing begins at 0.
'o'
>>> my_string[-1] # Negative indices count backward from the end.

13

'!'

Slice from the 0th to the 5th character (not including the 5th character).
>>> my_string[:5]
'Hello'

Slice from the 6th character to the end.
>>> my_string[6:]
'world!'

Slice from the 3rd to the 8th character (not including the 8th character).
>>> my_string[3:8]
'lo wo'

Get every other character in the string.
>>> my_string[::2]
'Hlowrd'

Problem 4. Write two new functions, called first_half() and backward().

1. first_half() should accept a parameter and return the first half of it, excluding the
middle character if there is an odd number of characters.
(Hint: the built-in function len() returns the length of the input.)

2. The backward() function should accept a parameter and reverse the order of its characters
using slicing, then return the reversed string.
(Hint: The step parameter used in slicing can be negative.)

Use IPython to quickly test your syntax for each function.

Lists

A Python list is created by enclosing comma-separated values with square brackets []. Entries of
a list do not have to be of the same type. Access entries in a list with the same indexing or slicing
operations used with strings.

>>> my_list = ["Hello", 93.8, "world", 10]
>>> my_list[0]
'Hello'
>>> my_list[-2]
'world'
>>> my_list[:2]
['Hello', 93.8]

Common list methods (functions) include append(), insert(), remove(), and pop(). Consult
IPython for details on each of these methods using object introspection.

14 Lab 1. Introduction to Python

>>> my_list = [1, 2] # Create a simple list of two integers.
>>> my_list.append(4) # Append the integer 4 to the end.
>>> my_list.insert(2, 3) # Insert 3 at location 2.
>>> my_list
[1, 2, 3, 4]
>>> my_list.remove(3) # Remove 3 from the list.
>>> my_list.pop() # Remove (and return) the last entry.
4
>>> my_list
[1, 2]

Slicing is also very useful for replacing values in a list.

>>> my_list = [10, 20, 30, 40, 50]
>>> my_list[0] = -1
>>> my_list[3:] = [8, 9]
>>> print(my_list)
[-1, 20, 30, 8, 9]

The in operator quickly checks if a given value is in a list (or another iterable, including strings).

>>> my_list = [1, 2, 3, 4, 5]
>>> 2 in my_list
True
>>> 6 in my_list
False
>>> 'a' in "xylophone" # 'in' also works on strings.
False

Tuples

A Python tuple is an ordered collection of elements, created by enclosing comma-separated values
with parentheses (and). Tuples are similar to lists, but they are much more rigid, have less built-in
operations, and cannot be altered after creation. Lists are therefore preferable for managing dynamic
ordered collections of objects.

When multiple objects are returned by a function, they are returned as a tuple. For example,
recall that the arithmetic() function returns two values.

>>> x, y = arithmetic(5,2) # Get each value individually,
>>> print(x, y)
3 10
>>> both = arithmetic(5,2) # or get them both as a tuple.
>>> print(both)
(3, 10)

15

Problem 5. Write a function called list_ops(). Define a list with the entries "bear", "ant",
"cat", and "dog", in that order. Then perform the following operations on the list:

1. Append "eagle".

2. Replace the entry at index 2 with "fox".

3. Remove (or pop) the entry at index 1.

4. Sort the list in reverse alphabetical order.

5. Replace "eagle" with "hawk".
(Hint: the list’s index() method may be helpful.)

6. Add the string "hunter" to the last entry in the list.

Return the resulting list.
Work out (on paper) what the result should be, then check that your function returns the

correct list. Consider printing the list at each step to see the intermediate results.

Sets

A Python set is an unordered collection of distinct objects. Objects can be added to or removed
from a set after its creation. Initialize a set with curly braces { }, separating the values by commas,
or use set() to create an empty set. Like mathematical sets, Python sets have operations like union,
intersection, difference, and symmetric difference.

Initialize some sets. Note that repeats are not added.
>>> gym_members = {"Doe, John", "Doe, John", "Smith, Jane", "Brown, Bob"}
>>> print(gym_members)
{'Doe, John', 'Brown, Bob', 'Smith, Jane'}

>>> gym_members.add("Lytle, Josh") # Add an object to the set.
>>> gym_members.discard("Doe, John") # Delete an object from the set.
>>> print(gym_members)
{'Lytle, Josh', 'Brown, Bob', 'Smith, Jane'}

>>> gym_members.intersection({"Lytle, Josh", "Henriksen, Ian", "Webb, Jared"})
{'Lytle, Josh'}
>>> gym_members.difference({"Brown, Bob", "Sharp, Sarah"})
{'Lytle, Josh', 'Smith, Jane'}

Dictionaries

Like a set, a Python dict (dictionary) is an unordered data type. A dictionary stores key-value
pairs, called items. The values of a dictionary are indexed by its keys. Dictionaries are initialized
with curly braces, colons, and commas. Use dict() or {} to create an empty dictionary.

16 Lab 1. Introduction to Python

>>> my_dictionary = {"business": 4121, "math": 2061, "visual arts": 7321}
>>> print(my_dictionary["math"])
2061

Add a value indexed by 'science' and delete the 'business' keypair.
>>> my_dictionary["science"] = 6284
>>> my_dictionary.pop("business") # Use 'pop' or 'popitem' to remove.
4121
>>> print(my_dictionary)
{'math': 2061, 'visual arts': 7321, 'science': 6284}

Display the keys and values.
>>> my_dictionary.keys()
dict_keys(['math', 'visual arts', 'science'])
>>> my_dictionary.values()
dict_values([2061, 7321, 6284])

As far as data access goes, lists are like dictionaries whose keys are the integers 0, 1, . . . , n− 1,
where n is the number of items in the list. The keys of a dictionary need not be integers, but they
must be immutable, which means that they must be objects that cannot be modified after creation.
We will discuss mutability more thoroughly in the Standard Library lab.

Type Casting

The names of each of Python’s data types can be used as functions to cast a value as that type. This
is particularly useful for converting between integers and floats.

Cast numerical values as different kinds of numerical values.
>>> x = int(3.0)
>>> y = float(3)
>>> z = complex(3)
>>> print(x, y, z)
3 3.0 (3+0j)

Cast a list as a set and vice versa.
>>> set([1, 2, 3, 4, 4])
{1, 2, 3, 4}
>>> list({'a', 'a', 'b', 'b', 'c'})
['a', 'c', 'b']

Cast other objects as strings.
>>> str(['a', str(1), 'b', float(2)])
"['a', '1', 'b', 2.0]"
>>> str(list(set([complex(float(3))])))
'[(3+0j)]'

17

Control Flow Tools
Control flow blocks dictate the order in which code is executed. Python supports the usual control
flow statements including if statements, while loops and for loops.

The If Statement

An if statement executes the indented code if (and only if) the given condition holds. The elif
statement is short for “else if” and can be used multiple times following an if statement, or not at
all. The else keyword may be used at most once at the end of a series of if/elif statements.

>>> food = "bagel"
>>> if food == "apple": # As with functions, the colon denotes
... print("72 calories") # the start of each code block.
... elif food == "banana" or food == "carrot":
... print("105 calories")
... else:
... print("calorie count unavailable")
...
calorie count unavailable

Problem 6. Write a function called pig_latin(). Accept a parameter word, translate it into
Pig Latin, then return the translation. Specifically, if word starts with a vowel, add “hay” to
the end; if word starts with a consonant, take the first character of word, move it to the end,
and add “ay”.
(Hint: use the in operator to check if the first letter is a vowel.)

The While Loop

A while loop executes an indented block of code while the given condition holds.

>>> i = 0
>>> while i < 10:
... print(i, end=' ') # Print a space instead of a newline.
... i += 1 # Shortcut syntax for i = i+1.
...
0 1 2 3 4 5 6 7 8 9

There are two additional useful statements to use inside of loops:

1. break manually exits the loop, regardless of which iteration the loop is on or if the termination
condition is met.

2. continue skips the current iteration and returns to the top of the loop block if the termination
condition is still not met.

18 Lab 1. Introduction to Python

>>> i = 0
>>> while True:
... print(i, end=' ')
... i += 1
... if i >= 10:
... break # Exit the loop.
...
0 1 2 3 4 5 6 7 8 9

>>> i = 0
>>> while i < 10:
... i += 1
... if i % 3 == 0:
... continue # Skip multiples of 3.
... print(i, end=' ')
1 2 4 5 7 8 10

The For Loop

A for loop iterates over the items in any iterable. Iterables include (but are not limited to) strings,
lists, sets, and dictionaries.

>>> colors = ["red", "green", "blue", "yellow"]
>>> for entry in colors:
... print(entry + "!")
...
red!
green!
blue!
yellow!

The break and continue statements also work in for loops, but a continue in a for loop will
automatically increment the index or item, whereas a continue in a while loop makes no automatic
changes to any variable.

>>> for word in ["It", "definitely", "looks", "pretty", "bad", "today"]:
... if word == "definitely":
... continue
... elif word == "bad":
... break
... print(word, end=' ')
...
It looks pretty

In addition, Python has some very useful built-in functions that can be used in conjunction
with the for statement:

19

1. range(start, stop, step): Produces a sequence of integers, following slicing syntax. If
only one argument is specified, it produces a sequence of integers from 0 to the argument,
incrementing by one. This function is used very often.

2. zip(): Joins multiple sequences so they can be iterated over simultaneously.

3. enumerate(): Yields both a count and a value from the sequence. Typically used to get both
the index of an item and the actual item simultaneously.

4. reversed(): Reverses the order of the iteration.

5. sorted(): Returns a new list of sorted items that can then be used for iteration.

Each of these functions except for sorted() returns an iterator, an object that is built specifically
for looping but not for creating actual lists. To put the items of the sequence in a collection, use
list(), set(), or tuple().

Strings and lists are both iterables.
>>> vowels = "aeiou"
>>> colors = ["red", "yellow", "white", "blue", "purple"]

Iterate by index.
>>> for i in range(5):
... print(i, vowels[i], colors[i])
...
0 a red
1 e yellow
2 i white
3 o blue
4 u purple

Iterate through both sequences at once.
>>> for letter, word in zip(vowels, colors):
... print(letter, word)
...
a red
e yellow
i white
o blue
u purple

Get the index and the item simultaneously.
>>> for i, color in enumerate(colors): #
... print(i, color)
...
0 red
1 yellow
2 white
3 blue
4 purple

20 Lab 1. Introduction to Python

Iterate through the list in sorted (alphabetical) order.
>>> for item in sorted(colors):
... print(item, end=' ')
...
blue purple red white yellow

Iterate through the list backward.
>>> for item in reversed(colors):
... print(item, end=' ')
...
purple blue white yellow red

range() arguments follow slicing syntax.
>>> list(range(10)) # Integers from 0 to 10, exclusive.
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list(range(4, 8)) # Integers from 4 to 8, exclusive.
[4, 5, 6, 7]

>>> set(range(2, 20, 3)) # Every third integer from 2 to 20.
{2, 5, 8, 11, 14, 17}

Problem 7. This problem originates from https://projecteuler.net, an excellent resource
for math-related coding problems.

A palindromic number reads the same both ways. The largest palindrome made from
the product of two 2-digit numbers is 9009 = 91 × 99. Write a function called palindrome()
that finds and returns the largest palindromic number made from the product of two 3-digit
numbers.

List Comprehension

A list comprehension uses for loop syntax between square brackets to create a list. This is a powerful,
efficient way to build lists. The code is concise and runs quickly.

>>> [float(n) for n in range(5)]
[0.0, 1.0, 2.0, 3.0, 4.0]

List comprehensions can be thought of as “inverted loops”, meaning that the body of the loop
comes before the looping condition. The following loop and list comprehension produce the same
list, but the list comprehension takes only about two-thirds the time to execute.

>>> loop_output = []
>>> for i in range(5):
... loop_output.append(i**2)
...
>>> list_output = [i**2 for i in range(5)]

https://projecteuler.net

21

Tuple, set, and dictionary comprehensions can be done in the same way as list comprehensions
by using the appropriate style of brackets on the end.

>>> colors = ["red", "blue", "yellow"]
>>> {c[0]:c for c in colors}
{'y': 'yellow', 'r': 'red', 'b': 'blue'}

>>> {"bright " + c for c in colors}
{'bright blue', 'bright red', 'bright yellow'}

Problem 8. The alternating harmonic series is defined as follows.

∞∑
n=1

(−1)(n+1)

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− . . . = ln(2)

Write a function called alt_harmonic() that accepts an integer n. Use a list comprehension
to quickly compute the first n terms of this series (be careful not to compute only n−1 terms).
The sum of the first 500,000 terms of this series approximates ln(2) to five decimal places.
(Hint: consider using Python’s built-in sum() function.)

22 Lab 1. Introduction to Python

Additional Material

Further Reading

Refer back to this and other introductory labs often as you continue getting used to Python syntax
and data types. As you continue your study of Python, we strongly recommend the following readings.

• The official Python tutorial: http://docs.python.org/3.6/tutorial/introduction.html
(especially chapters 3, 4, and 5).

• Section 1.2 of the SciPy lecture notes: http://scipy-lectures.github.io/.

• PEP8 - Python style guide: http://www.python.org/dev/peps/pep-0008/.

Generalized Function Input

On rare occasion, it is necessary to define a function without knowing exactly what the parameters
will be like or how many there will be. This is usually done by defining the function with the
parameters *args and **kwargs. Here *args is a list of the positional arguments and **kwargs is
a dictionary mapping the keywords to their argument. This is the most general form of a function
definition.

>>> def report(*args, **kwargs):
... for i, arg in enumerate(args):
... print("Argument " + str(i) + ":", arg)
... for key in kwargs:
... print("Keyword", key, "-->", kwargs[key])
...
>>> report("TK", 421, exceptional=False, missing=True)
Argument 0: TK
Argument 1: 421
Keyword missing --> True
Keyword exceptional --> False

See https://docs.python.org/3.6/tutorial/controlflow.html for more on this topic.

Function Decorators

A function decorator is a special function that “wraps” other functions. It takes in a function as
input and returns a new function that pre-processes the inputs or post-processes the outputs of the
original function.

>>> def typewriter(func):
... """Decorator for printing the type of output a function returns"""
... def wrapper(*args, **kwargs):
... output = func(*args, **kwargs) # Call the decorated function.
... print("output type:", type(output)) # Process before finishing.
... return output # Return the function output.
... return wrapper

http://docs.python.org/3.6/tutorial/introduction.html
http://scipy-lectures.github.io/
http://www.python.org/dev/peps/pep-0008/
https://docs.python.org/3.6/tutorial/controlflow.html

23

The outer function, typewriter(), returns the new function wrapper(). Since wrapper()
accepts *args and **kwargs as arguments, the input function func() could accepts any number of
positional or keyword arguments.

Apply a decorator to a function by tagging the function’s definition with an @ symbol and the
decorator name.

>>> @typewriter
... def combine(a, b, c):
... return a*b // c

Placing the tag above the definition is equivalent to adding the following line of code after the
function definition:

>>> combine = typewriter(combine)

Now calling combine() actually calls wrapper(), which then calls the original combine().

>>> combine(3, 4, 6)
output type: <class 'int'>
2
>>> combine(3.0, 4, 6)
output type: <class 'float'>
2.0

Function decorators can also customized with arguments. This requires another level of nesting:
the outermost function must define and return a decorator that defines and returns a wrapper.

>>> def repeat(times):
... """Decorator for calling a function several times."""
... def decorator(func):
... def wrapper(*args, **kwargs):
... for _ in range(times):
... output = func(*args, **kwargs)
... return output
... return wrapper
... return decorator
...
>>> @repeat(3)
... def hello_world():
... print("Hello, world!")
...
>>> hello_world()
Hello, world!
Hello, world!
Hello, world!

See https://www.python.org/dev/peps/pep-0318/ for more details.

https://www.python.org/dev/peps/pep-0318/

24 Lab 1. Introduction to Python

2 The Standard Library

Lab Objective: Python is designed to make it easy to implement complex tasks with little code.
To that end, every Python distribution includes several built-in functions for accomplishing common
tasks. In addition, Python is designed to import and reuse code written by others. A Python file with
code that can be imported is called a module. All Python distributions include a collection of modules
for accomplishing a variety of tasks, collectively called the Python Standard Library. In this lab we
explore some built-in functions, learn how to create, import, and use modules, and become familiar
with the standard library.

Built-in Functions

Python has several built-in functions that may be used at any time. IPython’s object introspection
feature makes it easy to learn about these functions: start IPython from the command line and use
? to bring up technical details on each function.

In [1]: min?
Docstring:
min(iterable, *[, default=obj, key=func]) -> value
min(arg1, arg2, *args, *[, key=func]) -> value

With a single iterable argument, return its smallest item. The
default keyword-only argument specifies an object to return if
the provided iterable is empty.
With two or more arguments, return the smallest argument.
Type: builtin_function_or_method

In [2]: len?
Signature: len(obj, /)
Docstring: Return the number of items in a container.
Type: builtin_function_or_method

25

26 Lab 2. The Standard Library

Function Returns
abs() The absolute value of a real number, or the magnitude

of a complex number.
min() The smallest element of a single iterable, or the smallest

of several arguments. Strings are compared based on
lexicographical order: numerical characters first, then
upper-case letters, then lower-case letters.

max() The largest element of a single iterable, or the largest
of several arguments.

len() The number of items of a sequence or collection.
round() A float rounded to a given precision in decimal digits.

sum() The sum of a sequence of numbers.

Table 2.1: Common built-in functions for numerical calculations.

abs() can be used with real or complex numbers.
>>> print(abs(-7), abs(3 + 4j))
7 5.0

min() and max() can be used on a list, string, or several arguments.
String characters are ordered lexicographically.
>>> print(min([4, 2, 6]), min("aXbYcZ"), min('1', 'a', 'A'))
2 X 1
>>> print(max([4, 2, 6]), max("aXbYcZ"), max('1', 'a', 'A'))
6 c a

len() can be used on a string, list, set, dict, tuple, or other iterable.
>>> print(len([2, 7, 1]), len("abcdef"), len({1, 'a', 'a'}))
3 6 2

sum() can be used on iterables containing numbers, but not strings.
>>> my_list = [1, 2, 3]
>>> my_tuple = (4, 5, 6)
>>> my_set = {7, 8, 9}
>>> sum(my_list) + sum(my_tuple) + sum(my_set)
45
>>> sum([min(my_list), max(my_tuple), len(my_set)])
10

round() is particularly useful for formatting data to be printed.
>>> round(3.14159265358979323, 2)
3.14

See https://docs.python.org/3/library/functions.html for more detailed documentation
on all of Python’s built-in functions.

https://docs.python.org/3/library/functions.html

27

Problem 1. Write a function that accepts a list L and returns the minimum, maximum, and
average of the entries of L (in that order). Can you implement this function in a single line?

Namespaces
Whenever a Python object—a number, data structure, function, or other entity—is created, it is
stored somewhere in computer memory. A name (or variable) is a reference to a Python object, and
a namespace is a dictionary that maps names to Python objects.

The number 4 is the object, 'number_of_students' is the name.
>>> number_of_sudents = 4

The list is the object, and 'beatles' is the name.
>>> beatles = ["John", "Paul", "George", "Ringo"]

Python statements defining a function form an object.
The name for this function is 'add_numbers'.
>>> def add_numbers(a, b):
... return a + b
...

A single equals sign assigns a name to an object. If a name is assigned to another name, that
new name refers to the same object as the original name.

>>> beatles = ["John", "Paul", "George", "Ringo"]
>>> band_members = beatles # Assign a new name to the list.
>>> print(band_members)
['John', 'Paul', 'George', 'Ringo']

To see all of the names in the current namespace, use the built-in function dir(). To delete a
name from the namespace, use the del keyword (with caution!).

Add 'stem' to the namespace.
>>> stem = ["Science", "Technology", "Engineering", "Mathematics"]
>>> dir()
['__annotations__', '__builtins__', '__doc__', '__loader__', '__name__',
'__package__', '__spec__', 'stem']

Remove 'stem' from the namespace.
>>> del stem
>>> "stem" in dir()
False
>>> print(stem)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'stem' is not defined

28 Lab 2. The Standard Library

Note

Many programming languages distinguish between variables and pointers. A pointer refers to
a variable by storing the address in memory where the corresponding object is stored. Python
names are essentially pointers, and traditional pointer operations and cleanup are done auto-
matically. For example, Python automatically deletes objects in memory that have no names
assigned to them (no pointers referring to them). This feature is called garbage collection.

Mutability

Every Python object type falls into one of two categories: a mutable object may be altered at any
time, while an immutable object cannot be altered once created. Attempting to change an immutable
object creates a new object in memory. If two names refer to the same mutable object, any changes
to the object are reflected in both names since they still both refer to that same object. On the other
hand, if two names refer to the same immutable object and one of the values is “changed,” one name
will refer to the original object, and the other will refer to a new object in memory.

Achtung!

Failing to correctly copy mutable objects can cause subtle problems. For example, consider a
dictionary that maps items to their base prices. To make a similar dictionary that accounts for
a small sales tax, we might try to make a copy by assigning a new name to the first dictionary.

>>> holy = {"moly": 1.99, "hand_grenade": 3, "grail": 1975.41}
>>> tax_prices = holy # Try to make a copy for processing.
>>> for item, price in tax_prices.items():
... # Add a 7 percent tax, rounded to the nearest cent.
... tax_prices[item] = round(1.07 * price, 2)
...
Now the base prices have been updated to the total price.
>>> print(tax_prices)
{'moly': 2.13, 'hand_grenade': 3.21, 'grail': 2113.69}

However, dictionaries are mutable, so 'holy' and 'tax_prices' actually
refer to the same object. The original base prices have been lost.
>>> print(holy)
{'moly': 2.13, 'hand_grenade': 3.21, 'grail': 2113.69}

To avoid this problem, explicitly create a copy of the object by casting it as a new structure.
Changes made to the copy will not change the original object, since they are distinct objects
in memory. To fix the above code, replace the second line with the following:

>>> tax_prices = dict(holy)

Then, after running the same procedure, the two dictionaries will be different.

29

Problem 2. Determine which of Python’s object types are mutable and which are immutable
by repeating the following experiment for an int, str, list, tuple, and set.

1. Create an object of the given type and assign a name to it.

2. Assign a new name to the first name.

3. Alter the object via only one of the names (for tuples, use my_tuple += (1,)).

4. Check to see if the two names are equal. If they are, then since changing one name
changed the other, the names refer to the same object and the object type is mutable.
Otherwise, the names refer to different objects—meaning a new object was created in
step 2—and therefore the object type is immutable.

For example, the following experiment shows that dict is a mutable type.

>>> dict_1 = {1: 'x', 2: 'b'} # Create a dictionary.
>>> dict_2 = dict_1 # Assign it a new name.
>>> dict_2[1] = 'a' # Change the 'new' dictionary.
>>> dict_1 == dict_2 # Compare the two names.
True # Both names changed!

Print a statement of your conclusions that clearly indicates which object types are mutable and
which are immutable.

Achtung!

Mutable objects cannot be put into Python sets or used as keys in Python dictionaries. However,
the values of a dictionary may be mutable or immutable.

>>> a_dict = {"key": "value"} # Dictionaries are mutable.
>>> broken = {1, 2, 3, a_dict, a_dict} # Try putting a dict in a set.
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'dict'

>>> okay = {1: 2, "3": a_dict} # Try using a dict as a value.

Modules
A module is a Python file containing code that is meant to be used in some other setting, and not
necessarily run directly.1 The import statement loads code from a specified Python file. Importing a
module containing some functions, classes, or other objects makes those functions, classes, or objects
available for use by adding their names to the current namespace.

1Python files that are primarily meant to be executed, not imported, are often called scripts.

30 Lab 2. The Standard Library

All import statements should occur at the top of the file, below the header but before any other
code. There are several ways to use import:

1. import <module> makes the specified module available under the alias of its own name.

>>> import math # The name 'math' now gives
>>> math.sqrt(2) # access to the math module.
1.4142135623730951

2. import <module> as <name> creates an alias for an imported module. The alias is added to
the current namespace, but the module name itself is not.

>>> import numpy as np # The name 'np' gives access to the numpy
>>> np.sqrt(2) # module, but the name 'numpy' does not.
1.4142135623730951
>>> numpy.sqrt(2)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'numpy' is not defined

3. from <module> import <object> loads the specified object into the namespace without load-
ing anything else in the module or the module name itself. This is used most often to access
specific functions from a module. The as statement can also be tacked on to create an alias.

>>> from random import randint # The name 'randint' gives access to the
>>> r = randint(0, 10000) # randint() function, but the rest of
>>> random.seed(r) # the random module is unavailable.
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'random' is not defined

In each case, the final word of the import statement is the name that is added to the namespace.

Running and Importing

Consider the following simple Python module, saved as example1.py.

example1.py

data = list(range(4))
def display():

print("Data:", data)

if __name__ == "__main__":
display()
print("This file was executed from the command line or an interpreter.")

else:
print("This file was imported.")

31

Executing the file from the command line executes the file line by line, including the code under
the if __name__ == "__main__" clause.

$ python example1.py
Data: [0, 1, 2, 3]
This file was executed from the command line or an interpreter.

Executing the file with IPython’s special %run command executes each line of the file and also
adds the module’s names to the current namespace. This is the quickest way to test individual
functions via IPython.

In [1]: %run example1.py
Data: [0, 1, 2, 3]
This file was executed from the command line or an interpreter.

In [2]: display()
Data: [0, 1, 2, 3]

Importing the file also executes each line,2 but only adds the indicated alias to the namespace.
Also, code under the if __name__ == "__main__" clause is not executed when a file is imported.

In [1]: import example1 as ex
This file was imported.

The module's names are not directly available...
In [2]: display()

NameError Traceback (most recent call last)
<ipython-input-2-795648993119> in <module>()
----> 1 display()

NameError: name 'display' is not defined

...unless accessed via the module's alias.
In [3]: ex.display()
Data: [0, 1, 2, 3]

Problem 3. Create a module called calculator.py. Write a function that returns the sum
of two arguments and a function that returns the product of two arguments. Also use import
to add the sqrt() function from the math module to the namespace. When this file is either
run or imported, nothing should be executed.

In your solutions file, import your new custom module. Write a function that accepts two
numbers representing the lengths of the sides of a right triangle. Using only the functions from
calculator.py, calculate and return the length of the hypotenuse of the triangle.

2Try importing the this or antigravity modules. Importing these modules actually executes some code.

32 Lab 2. The Standard Library

Achtung!

If a module has been imported in IPython and the source code then changes, using import again
does not refresh the name in the IPython namespace. Use run instead to correctly refresh the
namespace. Consider this example where we test the function sum_of_squares(), saved in the
file example2.py.

example2.py

def sum_of_squares(x):
"""Return the sum of the squares of all positive integers
less than or equal to x.
"""
return sum([i**2 for i in range(1,x)])

In IPython, run the file and test sum_of_squares().

Run the file, adding the function sum_of_squares() to the namespace.
In [1]: %run example2

In [2]: sum_of_squares(3)
Out[2]: 5 # Should be 14!

Since 12+22+32 = 14, not 5, something has gone wrong. Modify the source file to correct
the mistake, then run the file again in IPython.

example2.py

def sum_of_squares(x):
"""Return the sum of the squares of all positive integers
less than or equal to x.
"""
return sum([i**2 for i in range(1,x+1)]) # Include the final term.

Run the file again to refresh the namespace.
In [3]: %run example2

Now sum_of_squares() is updated to the new, corrected version.
In [4]: sum_of_squares(3)
Out[4]: 14 # It works!

Remember that running or importing a file executes any freestanding code snippets, but
any code under an if __name__ == "__main__" clause will only be executed when the file is
run (not when it is imported).

33

The Python Standard Library
All Python distributions include a collection of modules for accomplishing a variety of common tasks,
collectively called the Python standard library. Some commonly standard library modules are listed
below, and the complete list is at https://docs.python.org/3/library/.

Module Description
cmath Mathematical functions for complex numbers.

itertools Tools for iterating through sequences in useful ways.
math Standard mathematical functions and constants.
random Random variable generators.
string Common string literals.
sys Tools for interacting with the interpreter.
time Time value generation and manipulation.

Use IPython’s object introspection to quickly learn about how to use the various modules and
functions in the standard library. Use ? or help() for information on the module or one of its names.
To see the entire module’s namespace, use the tab key.

In [1]: import math

In [2]: math?
Type: module
String form: <module 'math' from '~/anaconda/lib/python3.6/ # ...
File: ~/anaconda/lib/python3.6/lib-dynload/ # ...
Docstring:
This module is always available. It provides access to the
mathematical functions defined by the C standard.

Type the module name, a period, then press tab to see the module's namespace.
In [3]: math. # Press 'tab'.

acos() cos() factorial() isclose() log2() tan()
acosh() cosh() floor() isfinite() modf() tanh()
asin() degrees() fmod() isinf() nan tau
asinh() e frexp() isnan() pi trunc()
atan() erf() fsum() ldexp() pow()
atan2() erfc() gamma() lgamma() radians()
atanh() exp() gcd() log() sin()
ceil() expm1() hypot() log10() sinh()
copysign() fabs() inf log1p() sqrt()

In [3]: math.sqrt?
Docstring:
sqrt(x)

Return the square root of x.
Type: builtin_function_or_method

https://docs.python.org/3/library/

34 Lab 2. The Standard Library

The Itertools Module

The itertools module makes it easy to iterate over one or more collections in specialized ways.

Function Description
chain() Iterate over several iterables in sequence.
cycle() Iterate over an iterable repeatedly.

combinations() Return successive combinations of elements in an iterable.
permutations() Return successive permutations of elements in an iterable.

product() Iterate over the Cartesian product of several iterables.

>>> from itertools import chain, cycle # Import multiple names.

>>> list(chain("abc", ['d', 'e'], ('f', 'g'))) # Join several
['a', 'b', 'c', 'd', 'e', 'f', 'g'] # sequences together.

>>> for i,number in enumerate(cycle(range(4))): # Iterate over a single
... if i > 10: # sequence over and over.
... break
... print(number, end=' ')
...
0 1 2 3 0 1 2 3 0 1 2

A k-combination is a set of k elements from a collection where the ordering is unimportant.
Thus the combination (a, b) and (b, a) are equivalent because they contain the same elements. One
the other hand, a k-permutation is a sequence of k elements from a collection where the ordering
matters. Even though (a, b) and (b, a) contain the same elements, they are counted as different
permutations.

>>> from itertools import combinations, permutations

Get all combinations of length 2 from the iterable "ABC".
>>> list(combinations("ABC", 2))
[('A', 'B'), ('A', 'C'), ('B', 'C')]

Get all permutations of length 2 from "ABC". Note that order matters here.
>>> list(permutations("ABC", 2))
[('A', 'B'), ('A', 'C'), ('B', 'A'), ('B', 'C'), ('C', 'A'), ('C', 'B')]

Problem 4. The power set of a set A, denoted P(A) or 2A, is the set of all subsets of A,
including the empty set ∅ and A itself. For example, the power set of the set A = {a, b, c} is
2A = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.

Write a function that accepts an iterable A. Use an itertools function to compute the
power set of A as a list of sets (why couldn’t it be a set of sets in Python?).

35

The Random Module

Many real-life events can be simulated by taking random samples from a probability distribution.
For example, a coin flip can be simulated by randomly choosing between the integers 1 (for heads)
and 0 (for tails). The random module includes functions for sampling from probability distributions
and generating random data.

Function Description
choice() Choose a random element from a non-empty sequence, such as a list.
randint() Choose a random integer integer over a closed interval.
random() Pick a float from the interval [0, 1).
sample() Choose several unique random elements from a non-empty sequence.
seed() Seed the random number generator.

shuffle() Randomize the ordering of the elements in a list.

Some of the most common random utilities involve picking random elements from iterables.

>>> import random

>>> numbers = list(range(1,11)) # Get the integers from 1 to 10.
>>> print(numbers)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> random.shuffle(numbers) # Mix up the ordering of the list.
>>> print(numbers) # Note that shuffle() returns nothing.
[5, 9, 1, 3, 8, 4, 10, 6, 2, 7]

>>> random.choice(numbers) # Pick a single element from the list.
5

>>> random.sample(numbers, 4) # Pick 4 unique elements from the list.
[5, 8, 3, 2]

>>> random.randint(1,10) # Pick a random number between 1 and 10.
10

The Time Module

The time module in the standard library include functions for dealing with time. In particular, the
time() function measures the number of seconds from a fixed starting point, called “the Epoch”
(January 1, 1970 for Unix machines).

>>> import time
>>> time.time()
1495243696.645818

The time() function is useful for measuring how long it takes for code to run: record the time
just before and just after the code in question, then subtract the first measurement from the second
to get the number of seconds that have passed.

36 Lab 2. The Standard Library

>>> def time_for_loop(iters):
... """Time how long it takes to iterate 'iters' times."""
... start = time.time() # Clock the starting time.
... for _ in range(int(iters)):
... pass
... end = time.time() # Clock the ending time.
... return end - start # Report the difference.
...
>>> time_for_loop(1e5) # 1e5 = 100000.
0.005570173263549805
>>> time_for_loop(1e7) # 1e7 = 10000000.
0.26819777488708496

The Sys Module

The sys (system) module includes methods for interacting with the Python interpreter. For example,
sys.argv is a list of arguments passed to the interpreter when it runs a Python file.

example3.py
"""Read a single command line argument and print it in all caps."""
import sys

if len(sys.argv) == 2:
print(sys.argv[1].upper())

else:
print("Exactly one extra command line argument is required")
print("System Arguments:", sys.argv)

Now provide command line arguments for the program to process.

$ python example3.py # No extra command line arguments.
Exactly one extra command line argument is required
System Arguments: ['example3.py']

$ python example3.py hello # One extra command line argument.
HELLO

$ python example3.py with 2 many arguments
Exactly one extra command line argument is required
System Arguments: ['example3.py', 'with', '2', 'many', 'arguments']

Note that the first command line argument is always the filename, and that sys.argv is always
a list of strings, even if a number is provided on the command line. In IPython, command line
arguments are specified after the %run command.

In [1]: %run example3.py hello
HELLO

37

Another way to get input from the program user is to prompt the user for text. The built-in
function input() pauses the program and waits for the user to type something. Like command line
arguments, the user’s input is parsed as a string.

>>> x = input("Enter a value for x: ")
Enter a value for x: 20 # Type '20' and press 'enter.'

>>> x
'20' # Note that x contains a string.

>> y = int(input("Enter an integer for y: "))
Enter an integer for y: 16 # Type '16' and press 'enter.'

>>> y
16 # Note that y contains an integer.

Problem 5. Shut the box is a popular British pub game that is used to help children learn
arithmetic. The player starts with the numbers 1 through 9, and the goal of the game is to
eliminate as many of these numbers as possible. At each turn the player rolls two dice, then
chooses a set of integers from the remaining numbers that sum up to the sum of the dice
roll. These numbers are removed, and the dice are then rolled again. The game ends when
none of the remaining integers can be combined to the sum of the dice roll, and the player’s
final score is the sum of the numbers that could not be eliminated. For a demonstration, see
https://www.youtube.com/watch?v=vLlZGBQ6TKs.

Modify your solutions file so that when the file is run with the correct command line
arguments (but not when it is imported), the user plays a game of shut the box. The provided
module box.py contains some functions that will be useful in your implementation of the game.
You do not need to understand exactly how the functions work, but you do need to be able to
import and use them correctly. Your game should match the following specifications:

• Require three total command line arguments: the file name (included by default), the
player’s name, and a time limit in seconds. If there are not exactly three command line
arguments, do not start the game.

• Track the player’s remaining numbers, starting with 1 through 9.

• Use the random module to simulate rolling two six-sided dice. However, if the sum of the
player’s remaining numbers is 6 or less, role only one die.

• The player wins if they have no numbers left, and they lose if they are out of time or if
they cannot choose numbers to match the dice roll.

• If the game is not over, print the player’s remaining numbers, the sum of the dice roll,
and the number of seconds remaining. Prompt the user for numbers to eliminate. The
input should be one or more of the remaining integers, separated by spaces. If the user’s
input is invalid, prompt them for input again before rolling the dice again.
(Hint: use round() to format the number of seconds remaining nicely.)

https://www.youtube.com/watch?v=vLlZGBQ6TKs

38 Lab 2. The Standard Library

• When the game is over, display the player’s name, their score, and the total number of
seconds since the beginning of the game. Congratulate or mock the player appropriately.

(Hint: Before you start coding, write an outline for the entire program, adding one feature
at a time. Only start implementing the game after you are completely finished designing it.)

Your game should look similar to the following examples. The characters in red are typed
inputs from the user.

$ python standard_library.py LuckyDuke 60

Numbers left: [1, 2, 3, 4, 5, 6, 7, 8, 9]
Roll: 12
Seconds left: 60.0
Numbers to eliminate: 3 9

Numbers left: [1, 2, 4, 5, 6, 7, 8]
Roll: 9
Seconds left: 53.51
Numbers to eliminate: 8 1

Numbers left: [2, 4, 5, 6, 7]
Roll: 7
Seconds left: 51.39
Numbers to eliminate: 7

Numbers left: [2, 4, 5, 6]
Roll: 2
Seconds left: 48.24
Numbers to eliminate: 2

Numbers left: [4, 5, 6]
Roll: 11
Seconds left: 45.16
Numbers to eliminate: 5 6

Numbers left: [4]
Roll: 4
Seconds left: 42.76
Numbers to eliminate: 4

Score for player LuckyDuke: 0 points
Time played: 15.82 seconds
Congratulations!! You shut the box!

The next two examples show different ways that a player could lose (which they usually
do), as well as examples of invalid user input. Use the box module’s parse_input() to detect
invalid input.

39

$ python standard_library.py ShakySteve 10

Numbers left: [1, 2, 3, 4, 5, 6, 7, 8, 9]
Roll: 7
Seconds left: 10.0
Numbers to eliminate: Seven # Must enter a number.
Invalid input

Seconds left: 7.64
Numbers to eliminate: 1, 2, 4 # Do not use commas.
Invalid input

Seconds left: 4.55
Numbers to eliminate: 1 2 3 # Numbers don't sum to the roll.
Invalid input

Seconds left: 2.4
Numbers to eliminate: 1 2 4

Numbers left: [3, 5, 6, 7, 8, 9]
Roll: 8
Seconds left: 0.31
Numbers to eliminate: 8
Game over! # Time is up!

Score for player ShakySteve: 30 points
Time played: 11.77 seconds
Better luck next time >:)

$ python standard_library.py SnakeEyesTom 10000

Numbers left: [1, 2, 3, 4, 5, 6, 7, 8, 9]
Roll: 2
Seconds left: 10000.0
Numbers to eliminate: 2

Numbers left: [1, 3, 4, 5, 6, 7, 8, 9]
Roll: 2
Game over! # Numbers cannot match roll.

Score for player SnakeEyesTom: 43 points
Time played: 1.53 seconds
Better luck next time >:)

40 Lab 2. The Standard Library

Additional Material

More Built-in Functions

The following built-in functions are worth knowing, especially for working with iterables and writing
very readable conditional statements.

Function Description
all() Return True if bool(entry) evaluates to True for every entry in

the input iterable.
any() Return True if bool(entry) evaluates to True for any entry in the

input iterable.
bool() Evaluate a single input object as True or False.
eval() Execute a string as Python code and return the output.
map() Apply a function to every item of the input iterable and return

an iterable of the results.

>>> from random import randint
Get 5 random numbers between 1 and 10, inclusive.
>>> numbers = [randint(1,10) for _ in range(5)]

If all of the numbers are less than 8, print the list.
>>> if all([num < 8 for num in numbers]):
... print(numbers)
...
[1, 5, 6, 3, 3]

If none of the numbers are divisible by 3, print the list.
>>> if not any([num % 3 == 0 for num in numbers]):
... print(numbers)
...

Two-Player Shut the Box

Consider modifying your shut the box program so that it pits two players against each other (one
player tries to shut the box while the other tries to keep it open). The first player plays a regular
round as described in Problem 5. Suppose he or she eliminates every number but 2, 3, and 6. The
second player then begins a round with the numbers 1, 4, 5, 7, 8, and 9, the numbers that the first
player had eliminated. If the second player loses, the first player gets another round to try to shut
the box with the numbers that the second player had eliminated. Play continues until one of the
players eliminates their entire list. In addition, each player should have their own time limit that
only ticks down during their turn. If time runs out on your turn, you lose no matter what.

41

Python Packages

Large programming projects often have code spread throughout several folders and files. In order
to get related files in different folders to communicate properly, the associated directories must
be organized into a Python packages. This is a common procedure when creating smart phone
applications and other programs that have graphical user interfaces (GUIs).

A package is simply a folder that contains a file called __init__.py. This file is always executed
first whenever the package is used. A package must also have a file called __main__.py in order to
be executable. Executing the package will run __init__.py and then __main__.py, but importing
the package will only run __init__.py.

Use the regular syntax to import a module or subpackage that is in the current package, and
use from <subpackage.module> import <object> to load a module within a subpackage. Once a
name has been loaded into a package’s __init__.py, other files in the same package can load the
same name with from . import <object>. To access code in the directory one level above the
current directory, use the syntax from .. import <object> This tells the interpreter to go up one
level and import the object from there. This is called an explicit relative import and cannot be done
in files that are executed directly (like __main__.py).

Finally, to execute a package, run Python from the shell with the flag -m (for “module-name”)
and exclude the extension .py.

$ python -m package_name

See https://docs.python.org/3/tutorial/modules.html#packages for examples and more
details.

https://docs.python.org/3/tutorial/modules.html#packages

42 Lab 2. The Standard Library

3 Object-oriented
Programming

Lab Objective: Python is a class-based language. A class is a blueprint for an object that binds
together specified variables and routines. Creating and using custom classes is often a good way to
write clean, efficient, well-designed programs. In this lab we learn how to define and use Python
classes. In subsequents labs, we will often create customized classes for use in algorithms.

Classes
A Python class is a code block that defines a custom object and determines its behavior. The class
key word defines and names a new class. Other statements follow, indented below the class name, to
determine the behavior of objects instantiated by the class.

A class needs a method called a constructor that is called whenever the class instantiates a new
object. The constructor specifies the initial state of the object. In Python, a class’s constructor is
always named __init__(). For example, the following code defines a class for storing information
about backpacks.

class Backpack:
"""A Backpack object class. Has a name and a list of contents.

Attributes:
name (str): the name of the backpack's owner.
contents (list): the contents of the backpack.

"""
def __init__(self, name): # This function is the constructor.

"""Set the name and initialize an empty list of contents.

Parameters:
name (str): the name of the backpack's owner.

"""
self.name = name # Initialize some attributes.
self.contents = []

43

44 Lab 3. Object-oriented Programming

An attribute is a variable stored within an object. The Backpack class has two attributes: name
and contents. In the body of the class definition, attributes are assigned and accessed via the name
self. This name refers to the object internally once it has been created.

Instantiation

The class code block above only defines a blueprint for backpack objects. To create an actual
backpack object, call the class name like a function. This triggers the constructor and returns a new
instance of the class, an object whose type is the class.

Import the Backpack class and instantiate an object called 'my_backpack'.
>>> from object_oriented import Backpack
>>> my_backpack = Backpack("Fred")
>>> type(my_backpack)
<class 'object_oriented.Backpack'>

Access the object's attributes with a period and the attribute name.
>>> print(my_backpack.name, my_backpack.contents)
Fred []

The object's attributes can be modified after instantiation.
>>> my_backpack.name = "George"
>>> print(my_backpack.name, my_backpack.contents)
George []

Note

Every object in Python has some built-in attributes. For example, modules have a __name__
attribute that identifies the scope in which it is being executed. If the module is being run
directly, not imported, __name__ is set to "__main__". Therefore, any commands under an
if __name__ == "__main__": clause are ignored when the module is imported.

Methods

In addition to storing variables as attributes, classes can have functions attached to them. A function
that belongs to a specific class is called a method.

class Backpack:
...
def put(self, item):

"""Add an item to the backpack's list of contents."""
self.contents.append(item) # Use 'self.contents', not just 'contents'.

def take(self, item):
"""Remove an item from the backpack's list of contents."""
self.contents.remove(item)

45

The first argument of each method must be self, to give the method access to the attributes
and other methods of the class. The self argument is only included in the declaration of the class
methods, not when calling the methods on an instantiation of the class.

Add some items to the backpack object.
>>> my_backpack.put("notebook") # my_backpack is passed implicitly to
>>> my_backpack.put("pencils") # Backpack.put() as the first argument.
>>> my_backpack.contents
['notebook', 'pencils']

Remove an item from the backpack. # This is equivalent to
>>> my_backpack.take("pencils") # Backpack.take(my_backpack, "pencils")
>>> my_backpack.contents
['notebook']

Problem 1. Expand the Backpack class to match the following specifications.

1. Modify the constructor so that it accepts three total arguments: name, color, and
max_size (in that order). Make max_size a keyword argument that defaults to 5. Store
each input as an attribute.

2. Modify the put() method to check that the backpack does not go over capacity. If there
are already max_size items or more, print “No Room!” and do not add the item to the
contents list.

3. Write a new method called dump() that resets the contents of the backpack to an empty
list. This method should not receive any arguments (except self).

4. Documentation is especially important in classes so that the user knows what an ob-
ject’s attributes represent and how to use methods appropriately. Update (or write) the
docstrings for the __init__(), put(), and dump() methods, as well as the actual class
docstring (under class but before __init__()) to reflect the changes from parts 1-3 of
this problem.

To ensure that your class works properly, write a test function outside outside of the
Backpack class that instantiates and analyzes a Backpack object.

def test_backpack():
testpack = Backpack("Barry", "black") # Instantiate the object.
if testpack.name != "Barry": # Test an attribute.

print("Backpack.name assigned incorrectly")
for item in ["pencil", "pen", "paper", "computer"]:

testpack.put(item) # Test a method.
print("Contents:", testpack.contents)
...

46 Lab 3. Object-oriented Programming

Inheritance
To create a new class that is similar to one that already exists, it is often better to inherit the methods
and attributes from an existing class rather than create a new class from scratch. This creates a
class hierarchy : a class that inherits from another class is called a subclass, and the class that a
subclass inherits from is called a superclass. To define a subclass, add the name of the superclass as
an argument at the end of the class declaration.

For example, since a knapsack is a kind of backpack (but not all backpacks are knapsacks), we
create a special Knapsack subclass that inherits the structure and behaviors of the Backpack class
and adds some extra functionality.

Inherit from the Backpack class in the class definition.
class Knapsack(Backpack):

"""A Knapsack object class. Inherits from the Backpack class.
A knapsack is smaller than a backpack and can be tied closed.

Attributes:
name (str): the name of the knapsack's owner.
color (str): the color of the knapsack.
max_size (int): the maximum number of items that can fit inside.
contents (list): the contents of the backpack.
closed (bool): whether or not the knapsack is tied shut.

"""
def __init__(self, name, color, max_size=3):

"""Use the Backpack constructor to initialize the name, color,
and max_size attributes. A knapsack only holds 3 item by default.

Parameters:
name (str): the name of the knapsack's owner.
color (str): the color of the knapsack.
max_size (int): the maximum number of items that can fit inside.

"""
Backpack.__init__(self, name, color, max_size)
self.closed = True

A subclass may have new attributes and methods that are unavailable to the superclass, such
as the closed attribute in the Knapsack class. If methods from the superclass need to be changed
for the subclass, they can be overridden by defining them again in the subclass. New methods can
be included normally.

class Knapsack(Backpack):
...
def put(self, item): # Override the put() method.

"""If the knapsack is untied, use the Backpack.put() method."""
if self.closed:

print("I'm closed!")
else: # Use Backpack's original put().

Backpack.put(self, item)

47

def take(self, item): # Override the take() method.
"""If the knapsack is untied, use the Backpack.take() method."""
if self.closed:

print("I'm closed!")
else:

Backpack.take(self, item)

def weight(self): # Define a new method just for knapsacks.
"""Calculate the weight of the knapsack by counting the length of the
string representations of each item in the contents list.
"""
return sum(len(str(item)) for item in self.contents)

Since Knapsack inherits from Backpack, a knapsack object is a backpack object. All methods
defined in the Backpack class are available to instances of the Knapsack class. For example, the
dump() method is available even though it is not defined explicitly in the Knapsack class.

The built-in function issubclass() shows whether or not one class is derived from another.
Similarly, isinstance() indicates whether or not an object belongs to a specified class hierarchy.
Finally, hasattr() shows whether or not a class or object has a specified attribute or method.

>>> from object_oriented import Knapsack
>>> my_knapsack = Knapsack("Brady", "brown")

A Knapsack is a Backpack, but a Backpack is not a Knapsack.
>>> print(issubclass(Knapsack, Backpack), issubclass(Backpack, Knapsack))
True False
>>> isinstance(my_knapsack, Knapsack) and isinstance(my_knapsack, Backpack)
True

The put() and take() method now require the knapsack to be open.
>>> my_knapsack.put('compass')
I'm closed!

Open the knapsack and put in some items.
>>> my_knapsack.closed = False
>>> my_knapsack.put("compass")
>>> my_knapsack.put("pocket knife")
>>> my_knapsack.contents
['compass', 'pocket knife']

The Knapsack class has a weight() method, but the Backpack class does not.
>>> print(hasattr(my_knapsack, 'weight'), hasattr(my_backpack, 'weight'))
True False

The dump method is inherited from the Backpack class.
>>> my_knapsack.dump()
>>> my_knapsack.contents
[]

48 Lab 3. Object-oriented Programming

Problem 2. Write a Jetpack class that inherits from the Backpack class.

1. Override the constructor so that in addition to a name, color, and maximum size, it also
accepts an amount of fuel. Change the default value of max_size to 2, and set the default
value of fuel to 10. Store the fuel as an attribute.

2. Add a fly() method that accepts an amount of fuel to be burned and decrements the
fuel attribute by that amount. If the user tries to burn more fuel than remains, print “Not
enough fuel!” and do not decrement the fuel.

3. Override the dump() method so that both the contents and the fuel tank are emptied.

4. Write clear, detailed docstrings for the class and each of its methods.

Note

All classes are subclasses of the built-in object class, even if no parent class is specified in
the class definition. In fact, the syntax “class ClassName(object):” is not uncommon (or
incorrect) for the class declaration, and is equivalent to the simpler “class ClassName:”.

Magic Methods
A magic method is a special method used to make an object behave like a built-in data type. Magic
methods begin and end with two underscores, like the constructor __init__(). Every Python object
is automatically endowed with several magic methods, which can be revealed through IPython.

In [1]: %run object_oriented.py

In [2]: b = Backpack("Oscar", "green")

In [3]: b. # Press 'tab' to see standard methods and attributes.
color max_size take()
contents name
dump() put()

In [3]: b.__ # Press 'tab' to see magic methods and hidden attributes.
__add__() __getattribute__ __new__()
__class__ __gt__ __reduce__()
__delattr__ __hash__ __reduce_ex__()
__dict__ __init__() __repr__
__dir__() __init_subclass__() __setattr__
__doc__ __le__ __sizeof__()
__eq__ __lt__() __str__
__format__() __module__ __subclasshook__()
__ge__ __ne__ __weakref__

49

Note

Many programming languages distinguish between public and private variables. In Python, all
attributes are public, period. However, attributes that start with an underscore are hidden
from the user, which is why magic methods do not show up at first in the preceding code box.

The more common magic methods define how an object behaves with respect to addition and
other binary operations. For example, how should addition be defined for backpacks? A simple
option is to add the number of contents. Then if backpack A has 3 items and backpack B has 5 items,
A + B should return 8. To incorporate this idea, we implement the __add__() magic method.

class Backpack:
...
def __add__(self, other):

"""Add the number of contents of each Backpack."""
return len(self.contents) + len(other.contents)

Using the + binary operator on two Backpack objects calls the class’s __add__() method. The
object on the left side of the + is passed in to __add__() as self and the object on the right side of
the + is passed in as other.

>>> pack1 = Backpack("Rose", "red")
>>> pack2 = Backpack("Carly", "cyan")

Put some items in the backpacks.
>>> pack1.put("textbook")
>>> pack2.put("water bottle")
>>> pack2.put("snacks")

Add the backpacks together.
>>> pack1 + pack2 # Equivalent to pack1.__add__(pack2).
3

Comparisons

Magic methods also facilitate object comparisons. For example, the __lt__() method corresponds
to the < operator. Suppose one backpack is considered “less” than another if it has fewer items in its
list of contents.

class Backpack(object)
...
def __lt__(self, other):

"""If 'self' has fewer contents than 'other', return True.
Otherwise, return False.
"""
return len(self.contents) < len(other.contents)

50 Lab 3. Object-oriented Programming

Using the < binary operator on two Backpack objects calls __lt__(). As with addition, the
object on the left side of the < operator is passed to __lt__() as self, and the object on the right
is passed in as other.

>>> pack1, pack2 = Backpack("Maggy", "magenta"), Backpack("Yolanda", "yellow")
>>> pack1 < pack2 # Equivalent to pack1.__lt__(pack2).
False

>>> pack2.put('pencils')
>>> pack1 < pack2
True

Comparison methods should return either True or False, while methods like __add__() might
return a numerical value or another kind of object.

Method Arithmetic Operator
__add__() +
__sub__() -
__mul__() *
__pow__() **

__truediv__() /
__floordiv__() //

Method Comparison Operator
__lt__() <
__le__() <=
__gt__() >
__ge__() >=
__eq__() ==
__ne__() !=

Table 3.1: Common magic methods for arithmetic and comparisons. What each of these operations
do is up to the programmer and should be carefully documented. For more methods and details, see
https://docs.python.org/3/reference/datamodel.html#special-method-names.

Problem 3. Endow the Backpack class with two additional magic methods:

1. The __eq__() magic method is used to determine if two objects are equal, and is invoked
by the == operator. Implement the __eq__() magic method for the Backpack class so
that two Backpack objects are equal if and only if they have the same name, color, and
number of contents.

2. The __str__()magic method returns the string representation of an object. This method
is invoked by str() and used by print(). Implement the __str__() method in the
Backpack class so that printing a Backpack object yields the following output (that is,
construct and return the following string).

Owner: <name>
Color: <color>
Size: <number of items in contents>
Max Size: <max_size>
Contents: [<item1>, <item2>, ...]

(Hint: Use the tab and newline characters '\t' and '\n' to align output nicely.)

https://docs.python.org/3/reference/datamodel.html#special-method-names

51

Achtung!

Magic methods for comparison are not automatically related. For example, even though the
Backpack class implements the magic methods for < and ==, two Backpack objects cannot
respond to the <= operator unless __le__() is explicitly defined. The exception to this rule is
the != operator: as long as __eq__() is defined, A!=B is False if and only if A==B is True.

Problem 4. Write a ComplexNumber class from scratch.

1. Complex numbers are denoted a+ bi where a, b ∈ R and i =
√
−1. Write the constructor

so it accepts two numbers. Store the first as self.real and the second as self.imag.

2. The complex conjugate of a+bi is defined as a+ bi = a−bi. Write a conjugate() method
that returns the object’s complex conjugate as a new ComplexNumber object.

3. Add the following magic methods:

(a) Implement __str__() so that a+ bi is printed out as (a+bj) for b ≥ 0 and (a-bj)
for b < 0.

(b) The magnitude of a + bi is |a + bi| =
√
a2 + b2. The __abs__() magic method

determines the output of the built-in abs() function (absolute value). Implement
__abs__() so that it returns the magnitude of the complex number.

(c) Implement __eq__() so that two ComplexNumber objects are equal if and only if
they have the same real and imaginary parts.

(d) Implement __add__(), __sub__(), __mul__(), and __truediv__() appropriately.
Each of these should return a new ComplexNumber object.

Write a function to test your class by comparing it to Python’s built-in complex type.

def test_ComplexNumber(a, b):
py_cnum, my_cnum = complex(a, b), ComplexNumber(a, b)

Validate the constructor.
if my_cnum.real != a or my_cnum.imag != b:

print("__init__() set self.real and self.imag incorrectly")

Validate conjugate() by checking the new number's imag attribute.
if py_cnum.conjugate().imag != my_cnum.conjugate().imag:

print("conjugate() failed for", py_cnum)

Validate __str__().
if str(py_cnum) != str(my_cnum):

print("__str__() failed for", py_cnum)
...

52 Lab 3. Object-oriented Programming

Additional Material
Static Attributes

Attributes that are accessed through self are called instance attributes because they are bound to
a particular instance of the class. In contrast, a static attribute is one that is shared between all
instances of the class. To make an attribute static, declare it inside of the class block but outside of
any of the class’s methods, and do not use self. Since the attribute is not tied to a specific instance
of the class, it may be accessed or changed via the class name without even instantiating the class
at all.

class Backpack:
...
brand = "Adidas" # Backpack.brand is a static attribute.

>>> pack1, pack2 = Backpack("Bill", "blue"), Backpack("William", "white")
>>> print(pack1.brand, pack2.brand, Backpack.brand)
Adidas Adidas Adidas

Change the brand name for the class to change it for all class instances.
>>> Backpack.brand = "Nike"
>>> print(pack1.brand, pack2.brand, Backpack.brand)
Nike Nike Nike

Static Methods

Individual class methods can also be static. A static method cannot be dependent on the attributes
of individual instances of the class, so there can be no references to self inside the body of the
method and self is not listed as an argument in the function definition. Thus static methods only
have access to static attributes and other static methods. Include the tag @staticmethod above the
function definition to designate a method as static.

class Backpack:
...
@staticmethod
def origin(): # Do not use 'self' as a parameter.

print("Manufactured by " + Backpack.brand + ", inc.")

Static methods can be called without instantiating the class.
>>> Backpack.origin()
Manufactured by Nike, inc.

The method can also be accessed by individual class instances.
>>> pack = Backpack("Larry", "lime")
>>> pack.origin()
Manufactured by Nike, inc.

53

To practice these principles, consider adding a static attribute to the Backpack class to serve as
a counter for a unique ID. In the constructor for the Backpack class, add an instance variable called
self.ID. Set this ID based on the static ID variable, then increment the static ID so that the next
Backpack object will have a different ID.

More Magic Methods

Consider how the following methods might be implemented for the Backpack class. These methods
are particularly important for custom data structure classes.

Method Operation Trigger Function
__bool__() Truth value bool()
__len__() Object length or size len()
__repr__() Object representation repr()

__getitem__() Indexing and slicing self[index]
__setitem__() Assignment via indexing self[index] = x

__iter__() Iteration over the object iter()
__reversed__() Reverse iteration over the object reversed()
__contains__() Membership testing in

See https://docs.python.org/3/reference/datamodel.html#special-method-names for more
details and documentation on all magic methods.

Hashing

A hash value is an integer that uniquely identifies an object. The built-in hash() function calculates
an object’s hash value by calling its __hash__() magic method.

In Python, the built-in set and dict structures use hash values to store and retrieve objects
in memory quickly. If an object is unhashable, it cannot be put in a set or be used as a key in a
dictionary. See https://docs.python.org/3/glossary.html#term-hashable for details.

If the __hash__() method is not defined, the default hash value is the object’s memory address
(accessible via the built-in function id()) divided by 16, rounded down to the nearest integer. How-
ever, two objects that compare as equal via the __eq__() magic method must have the same hash
value. The following simple __hash__() method for the Backpack class conforms to this rule and
returns an integer.

class Backpack:
...
def __hash__(self):

return hash(self.name) ^ hash(self.color) ^ hash(len(self.contents))

The caret operator ˆ is a bitwise XOR (exclusive or). The bitwise AND operator & and the
bitwise OR operator | are also good choices to use.

See https://docs.python.org/3/reference/datamodel.html#object.__hash__ for more on
hashing.

https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/glossary.html#term-hashable
https://docs.python.org/3/reference/datamodel.html#object.__hash__

54 Lab 3. Object-oriented Programming

4 Introduction to NumPy

Lab Objective: NumPy is a powerful Python package for manipulating data with multi-dimensional
vectors. Its versatility and speed makes Python an ideal language for applied and computational
mathematics. In this lab we introduce basic NumPy data structures and operations as a first step to
numerical computing in Python.

Arrays
In many algorithms, data can be represented mathematically as a vector or a matrix. Conceptually,
a vector is just a list of numbers and a matrix is a two-dimensional list of numbers (a list of lists).
However, even basic linear algebra operations like matrix multiplication are cumbersome to implement
and slow to execute when data is stored this way. The NumPy module1 offers a much better solution.

The basic object in NumPy is the array, which is conceptually similar to a matrix. The NumPy
array class is called ndarray (for “n-dimensional array”). The simplest way to explicitly create a 1-D
ndarray is to define a list, then cast that list as an ndarray with NumPy’s array() function.

>>> import numpy as np

Create a 1-D array by passing a list into NumPy's array() function.
>>> np.array([8, 4, 6, 0, 2])
array([8, 4, 6, 0, 2])

The string representation has no commas or an array() label.
>>> print(np.array([1, 3, 5, 7, 9]))
[1 3 5 7 9]

The alias “np” is standard in the Python community.
An ndarray can have arbitrarily many dimensions. A 2-D array is a 1-D array of 1-D arrays

(like a list of lists), a 3-D array is a 1-D array of 2-D arrays (a list of lists of lists), and, more generally,
an n-dimensional array is a 1-D array of (n− 1)-dimensional arrays (a list of lists of lists of lists...).
Each dimension is called an axis. For a 2-D array, the 0-axis indexes the rows and the 1-axis indexes
the columns. Elements are accessed using brackets and indices, with the axes separated by commas.

1NumPy is not part of the standard library, but it is included in most Python distributions.

55

56 Lab 4. Introduction to NumPy

Create a 2-D array by passing a list of lists into array().
>>> A = np.array([[1, 2, 3],[4, 5, 6]])
>>> print(A)
[[1 2 3]
[4 5 6]]

Access elements of the array with brackets.
>>> print(A[0, 1], A[1, 2])
2 6

The elements of a 2-D array are 1-D arrays.
>>> A[0]
array([1, 2, 3])

Problem 1. There are two main ways to perform matrix multiplication in NumPy: with
NumPy’s dot() function (np.dot(A, B)), or with the @ operator (A @ B). Write a function
that defines the following matrices as NumPy arrays.

A =

[
3 −1 4

1 5 −9

]
B =

 2 6 −5 3

5 −8 9 7

9 −3 −2 −3

Return the matrix product AB.

For examples of array initialization and matrix multiplication, use object introspection in
IPython to look up the documentation for np.ndarray, np.array() and np.dot().

In [1]: import numpy as np

In [2]: np.array? # press 'enter'

Achtung!

The @ operator was not introduced until Python 3.5. It triggers the __matmul__() magic
method,a which for the ndarray is essentially a wrapper around np.dot(). If you are using a
previous version of Python, always use np.dot() to perform basic matrix multiplication.

aSee the lab on Object Oriented Programming for an overview of magic methods.

Basic Array Operations

NumPy arrays behave differently with respect to the binary arithmetic operators + and * than Python
lists do. For lists, + concatenates two lists and * replicates a list by a scalar amount (strings also
behave this way).

57

Addition concatenates lists together.
>>> [1, 2, 3] + [4, 5, 6]
[1, 2, 3, 4, 5, 6]

Mutliplication concatenates a list with itself a given number of times.
>>> [1, 2, 3] * 4
[1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3]

NumPy arrays act like mathematical vectors and matrices: + and * perform component-wise
addition or multiplication.

>>> x, y = np.array([1, 2, 3]), np.array([4, 5, 6])

Addition or multiplication by a scalar acts on each element of the array.
>>> x + 10 # Add 10 to each entry of x.
array([11, 12, 13])
>>> x * 4 # Multiply each entry of x by 4.
array([4, 8, 12])

Add two arrays together (component-wise).
>>> x + y
array([5, 7, 9])

Multiply two arrays together (component-wise).
>>> x * y
array([4, 10, 18])

Problem 2. Write a function that defines the following matrix as a NumPy array.

A =

 3 1 4

1 5 9

−5 3 1

Return the matrix −A3 + 9A2 − 15A.

In this context, A2 = AA (the matrix product, not the component-wise square). The
somewhat surprising result is a demonstration of the Cayley-Hamilton theorem.

Array Attributes

An ndarray object has several attributes, some of which are listed below.

Attribute Description
dtype The type of the elements in the array.
ndim The number of axes (dimensions) of the array.
shape A tuple of integers indicating the size in each dimension.
size The total number of elements in the array.

58 Lab 4. Introduction to NumPy

>>> A = np.array([[1, 2, 3],[4, 5, 6]])

'A' is a 2-D array with 2 rows, 3 columns, and 6 entries.
>>> print(A.ndim, A.shape, A.size)
2 (2, 3) 6

Note that ndim is the number of entries in shape, and that the size of the array is the product
of the entries of shape.

Array Creation Routines

In addition to casting other structures as arrays via np.array(), NumPy provides efficient ways to
create certain commonly-used arrays.

Function Returns
arange() Array of sequential integers (like list(range())).

eye() 2-D array with ones on the diagonal and zeros elsewhere.
ones() Array of given shape and type, filled with ones.

ones_like() Array of ones with the same shape and type as a given array.
zeros() Array of given shape and type, filled with zeros.

zeros_like() Array of zeros with the same shape and type as a given array.
full() Array of given shape and type, filled with a specified value.

full_like() Full array with the same shape and type as a given array.

Each of these functions accepts the keyword argument dtype to specify the data type. Common
types include np.bool_, np.int64, np.float64, and np.complex128.

A 1-D array of 5 zeros.
>>> np.zeros(5)
array([0., 0., 0., 0., 0.])

A 2x5 matrix (2-D array) of integer ones.
>>> np.ones((2,5), dtype=np.int) # The shape is specified as a tuple.
array([[1, 1, 1, 1, 1],

[1, 1, 1, 1, 1]])

The 2x2 identity matrix.
>>> I = np.eye(2)
>>> print(I)
[[1. 0.]
[0. 1.]]

Array of 3s the same size as 'I'.
>>> np.full_like(I, 3) # Equivalent to np.full(I.shape, 3).
array([[3., 3.],

[3., 3.]])

59

Unlike native Python data structures, all elements of a NumPy array must be of the
same data type. To change an existing array’s data type, use the array’s astype() method.

A list of integers becomes an array of integers.
>>> x = np.array([0, 1, 2, 3, 4])
>>> print(x)
[0 1 2 3 4]
>>> x.dtype
dtype('int64')

Change the data type to one of NumPy's float types.
>>> x = x.astype(np.float64) # Equivalent to x = np.float64(x).
>>> print(x)
[0. 1. 2. 3. 4.] # Floats are displayed with periods.
>>> x.dtype
dtype('float64')

The following functions are for dealing with the diagonal, upper, or lower portion of an array.

Function Description
diag() Extract a diagonal or construct a diagonal array.
tril() Get the lower-triangular portion of an array by replacing entries above

the diagonal with zeros.
triu() Get the upper-triangular portion of an array by replacing entries below

the diagonal with zeros.

>>> A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

Get only the upper triangular entries of 'A'.
>>> np.triu(A)
array([[1, 2, 3],

[0, 5, 6],
[0, 0, 9]])

Get the diagonal entries of 'A' as a 1-D array.
>>> np.diag(A)
array([1, 5, 9])

diag() can also be used to create a diagonal matrix from a 1-D array.
>>> np.diag([1, 11, 111])
array([[1, 0, 0],

[0, 11, 0],
[0, 0, 111]])

See http://docs.scipy.org/doc/numpy/reference/routines.array-creation.html for the
official documentation on NumPy’s array creation routines.

http://docs.scipy.org/doc/numpy/reference/routines.array-creation.html

60 Lab 4. Introduction to NumPy

Problem 3. Write a function that defines the following matrices as NumPy arrays using the
functions presented in this section (not np.array()). Calculate the matrix product ABA.
Change the data type of the resulting matrix to np.int64, then return it.

A =

1 1 1 1 1 1 1

0 1 1 1 1 1 1

0 0 1 1 1 1 1

0 0 0 1 1 1 1

0 0 0 0 1 1 1

0 0 0 0 0 1 1

0 0 0 0 0 0 1

B =

−1 5 5 5 5 5 5

−1 −1 5 5 5 5 5

−1 −1 −1 5 5 5 5

−1 −1 −1 −1 5 5 5

−1 −1 −1 −1 −1 5 5

−1 −1 −1 −1 −1 −1 5

−1 −1 −1 −1 −1 −1 −1

Data Access
Array Slicing

Indexing for a 1-D NumPy array uses the slicing syntax x[start:stop:step]. If there is no colon,
a single entry of that dimension is accessed. With a colon, a range of values is accessed. For multi-
dimensional arrays, use a comma to separate slicing syntax for each axis.

Make an array of the integers from 0 to 10 (exclusive).
>>> x = np.arange(10)
>>> x
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Access elements of the array with slicing syntax.
>>> x[3] # The element at index 3.
3
>>> x[:3] # Everything up to index 3 (exclusive).
array([0, 1, 2])
>>> x[3:] # Everything from index 3 on.
array([3, 4, 5, 6, 7, 8, 9])
>>> x[3:8] # The elements from index 3 to 8.
array([3, 4, 5, 6, 7])

>>> A = np.array([[0,1,2,3,4],[5,6,7,8,9]])
>>> A
array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9]])

Use a comma to separate the dimensions for multi-dimensional arrays.
>>> A[1, 2] # The element at row 1, column 2.
7
>>> A[:, 2:] # All of the rows, from column 2 on.
array([[2, 3, 4],

[7, 8, 9]])

61

Note

Indexing and slicing operations return a view of the array. Changing a view of an array also
changes the original array. In other words, arrays are mutable. To create a copy of an array,
use np.copy() or the array’s copy() method. Changes to a copy of an array does not affect
the original array, but copying an array uses more time and memory than getting a view.

Fancy Indexing

So-called fancy indexing is a second way to access or change the elements of an array. Instead of
using slicing syntax, provide either an array of indices or an array of boolean values (called a mask)
to extract specific elements.

>>> x = np.arange(0, 50, 10) # The integers from 0 to 50 by tens.
>>> x
array([0, 10, 20, 30, 40])

An array of integers extracts the entries of 'x' at the given indices.
>>> index = np.array([3, 1, 4]) # Get the 3rd, 1st, and 4th elements.
>>> x[index] # Same as np.array([x[i] for i in index]).
array([30, 10, 40])

A boolean array extracts the elements of 'x' at the same places as 'True'.
>>> mask = np.array([True, False, False, True, False])
>>> x[mask] # Get the 0th and 3rd entries.
array([0, 30])

Fancy indexing is especially useful for extracting or changing the values of an array that meet
some sort of criterion. Use comparison operators like < and == to create masks.

>>> y = np.arange(10, 20, 2) # Every other integers from 10 to 20.
>>> y
array([10, 12, 14, 16, 18])

Extract the values of 'y' larger than 15.
>>> mask = y > 15 # Same as np.array([i > 15 for i in y]).
>>> mask
array([False, False, False, True, True], dtype=bool)
>>> y[mask] # Same as y[y > 15]
array([16, 18])

Change the values of 'y' that are larger than 15 to 100.
>>> y[mask] = 100
>>> print(y)
[10 12 14 100 100]

While indexing and slicing always return a view, fancy indexing always returns a copy.

62 Lab 4. Introduction to NumPy

Problem 4. Write a function that accepts a single array as input. Make a copy of the array,
then use fancy indexing to set all negative entries of the copy to 0. Return the copy.

Array Manipulation
Shaping

An array’s shape attribute describes its dimensions. Use np.reshape() or the array’s reshape()
method to give an array a new shape. The total number of entries in the old array and the new
array must be the same in order for the shaping to work correctly. Using a -1 in the new shape tuple
makes the specified dimension as long as necessary.

>>> A = np.arange(12) # The integers from 0 to 12 (exclusive).
>>> print(A)
[0 1 2 3 4 5 6 7 8 9 10 11]

'A' has 12 entries, so it can be reshaped into a 3x4 matrix.
>>> A.reshape((3,4)) # The new shape is specified as a tuple.
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

Reshape 'A' into an array with 2 rows and the appropriate number of columns.
>>> A.reshape((2,-1))
array([[0, 1, 2, 3, 4, 5],

[6, 7, 8, 9, 10, 11]])

Use np.ravel() to flatten a multi-dimensional array into a 1-D array and np.transpose() or
the T attribute to transpose a 2-D array in the matrix sense.

>>> A = np.arange(12).reshape((3,4))
>>> A
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

Flatten 'A' into a one-dimensional array.
>>> np.ravel(A) # Equivalent to A.reshape(A.size)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])

Transpose the matrix 'A'.
>>> A.T # Equivalent to np.transpose(A).
array([[0, 4, 8],

[1, 5, 9],
[2, 6, 10],
[3, 7, 11]])

63

Note

By default, all NumPy arrays that can be represented by a single dimension, including column
slices, are automatically reshaped into “flat” 1-D arrays. For example, by default an array will
have 10 elements instead of 10 arrays with one element each. Though we usually represent
vectors vertically in mathematical notation, NumPy methods such as dot() are implemented
to purposefully work well with 1-D “row arrays”.

>>> A = np.arange(10).reshape((2,5))
>>> A
array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9]])

Slicing out a column of A still produces a "flat" 1-D array.
>>> x = A[:,1] # All of the rows, column 1.
>>> x
array([1, 6]) # Not array([[1],
>>> x.shape # [6]])
(2,)
>>> x.ndim
1

However, it is occasionally necessary to change a 1-D array into a “column array”. Use
np.reshape(), np.vstack(), or slice the array and put np.newaxis on the second axis. Note
that np.transpose() does not alter 1-D arrays.

>>> x = np.arange(3)
>>> x
array([0, 1, 2])

>>> x.reshape((-1,1)) # Or x[:,np.newaxis] or np.vstack(x).
array([[0],

[1],
[2]])

Do not force a 1-D vector to be a column vector unless necessary.

Stacking

NumPy has functions for stacking two or more arrays with similar dimensions into a single block
matrix. Each of these methods takes in a single tuple of arrays to be stacked in sequence.

Function Description
concatenate() Join a sequence of arrays along an existing axis

hstack() Stack arrays in sequence horizontally (column wise).
vstack() Stack arrays in sequence vertically (row wise).

column_stack() Stack 1-D arrays as columns into a 2-D array.

64 Lab 4. Introduction to NumPy

>>> A = np.arange(6).reshape((2,3))
>>> B = np.zeros((4,3))

vstack() stacks arrays vertically (row-wise).
>>> np.vstack((A,B,A))
array([[0., 1., 2.], # A

[3., 4., 5.],
[0., 0., 0.], # B
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 1., 2.], # A
[3., 4., 5.]])

>>> A = A.T
>>> B = np.ones((3,4))

hstack() stacks arrays horizontally (column-wise).
>>> np.hstack((A,B,A))
array([[0., 3., 1., 1., 1., 1., 0., 3.],

[1., 4., 1., 1., 1., 1., 1., 4.],
[2., 5., 1., 1., 1., 1., 2., 5.]])

column_stack() stacks arrays horizontally, including 1-D arrays.
>>> np.column_stack((A, np.zeros(3), np.ones(3), np.full(3, 2)))
array([[0., 3., 0., 1., 2.],

[1., 4., 0., 1., 2.],
[2., 5., 0., 1., 2.]])

See http://docs.scipy.org/doc/numpy-1.10.1/reference/routines.array-manipulation.html
for more array manipulation routines and documentation.

Problem 5. Write a function that defines the following matrices as NumPy arrays.

A =

[
0 2 4

1 3 5

]
B =

 3 0 0

3 3 0

3 3 3

 C =

 −2 0 0

0 −2 0

0 0 −2

Use NumPy’s stacking functions to create and return the block matrix: 0 AT I

A 0 0

B 0 C

 ,
where I is the 3× 3 identity matrix and each 0 is a matrix of all zeros of appropriate size.

A block matrix of this form is used in the interior point method for linear optimization.

http://docs.scipy.org/doc/numpy-1.10.1/reference/routines.array-manipulation.html

65

Array Broadcasting

Many matrix operations make sense only when the two operands have the same shape, such as
element-wise addition. Array broadcasting extends such operations to accept some (but not all)
operands with different shapes, and occurs automatically whenever possible.

Suppose, for example, that we would like to add different values to the columns of an m × n
matrix A. Adding a 1-D array x with the n entries to A will automatically do this correctly. To add
different values to the different rows of A, first reshape a 1-D array of m values into a column array.
Broadcasting then correctly takes care of the operation.

Broadcasting can also occur between two 1-D arrays, once they are reshaped appropriately.

>>> A = np.arange(12).reshape((4,3))
>>> x = np.arange(3)
>>> A
array([[0, 1, 2],

[3, 4, 5],
[6, 7, 8],
[9, 10, 11]])

>>> x
array([0, 1, 2])

Add the entries of 'x' to the corresponding columns of 'A'.
>>> A + x
array([[0, 2, 4],

[3, 5, 7],
[6, 8, 10],
[9, 11, 13]])

>>> y = np.arange(0, 40, 10).reshape((4,1))
>>> y
array([[0],

[10],
[20],
[30]])

Add the entries of 'y' to the corresponding rows of 'A'.
>>> A + y
array([[0, 1, 2],

[13, 14, 15],
[26, 27, 28],
[39, 40, 41]])

Add 'x' and 'y' together with array broadcasting.
>>> x + y
array([[0, 1, 2],

[10, 11, 12],
[20, 21, 22],
[30, 31, 32]])

66 Lab 4. Introduction to NumPy

Numerical Computing with NumPy

Universal Functions

A universal function is one that operates on an entire array element-wise. Universal functions are
significantly more efficient than using a loop to operate individually on each element of an array.

Function Description
abs() or absolute() Calculate the absolute value element-wise.

exp() / log() Exponential (ex) / natural log element-wise.
maximum() / minimum() Element-wise maximum / minimum of two arrays.

sqrt() The positive square-root, element-wise.
sin(), cos(), tan(), etc. Element-wise trigonometric operations.

>>> x = np.arange(-2,3)
>>> print(x, np.abs(x)) # Like np.array([abs(i) for i in x]).
[-2 -1 0 1 2] [2 1 0 1 2]

>>> np.sin(x) # Like np.array([math.sin(i) for i in x]).
array([-0.90929743, -0.84147098, 0. , 0.84147098, 0.90929743])

See http://docs.scipy.org/doc/numpy/reference/ufuncs.html#available-ufuncs for a
more comprehensive list of universal functions.

Achtung!

The math module has many useful functions for numerical computations. However, most of
these functions can only act on single numbers, not on arrays. NumPy functions can act on
either scalars or entire arrays, but math functions tend to be a little faster for acting on scalars.

>>> import math

Math and NumPy functions can both operate on scalars.
>>> print(math.exp(3), np.exp(3))
20.085536923187668 20.0855369232

However, math functions cannot operate on arrays.
>>> x = np.arange(-2, 3)
>>> np.tan(x)
array([2.18503986, -1.55740772, 0. , 1.55740772, -2.18503986])
>>> math.tan(x)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: only length-1 arrays can be converted to Python scalars

Always use universal NumPy functions, not the math module, when working with arrays.

http://docs.scipy.org/doc/numpy/reference/ufuncs.html#available-ufuncs

67

Other Array Methods

The np.ndarray class itself has many useful methods for numerical computations.

Method Returns
all() True if all elements evaluate to True.
any() True if any elements evaluate to True.

argmax() Index of the maximum value.
argmin() Index of the minimum value.
argsort() Indices that would sort the array.

clip() restrict values in an array to fit within a given range
max() The maximum element of the array.
mean() The average value of the array.
min() The minimum element of the array.
sort() Return nothing; sort the array in-place.
std() The standard deviation of the array.
sum() The sum of the elements of the array.
var() The variance of the array.

Each of these np.ndarray methods has an equivalent NumPy function. For example, A.max()
and np.max(A) operate the same way. The one exception is the sort() function: np.sort() returns
a sorted copy of the array, while A.sort() sorts the array in-place and returns nothing.

Every method listed can operate along an axis via the keyword argument axis. If axis is
specified for a method on an n-D array, the return value is an (n − 1)-D array, the specified axis
having been collapsed in the evaluation process. If axis is not specified, the return value is usually
a scalar. Refer to the NumPy Visual Guide in the appendix for more visual examples.

>>> A = np.arange(9).reshape((3,3))
>>> A
array([[0, 1, 2],

[3, 4, 5],
[6, 7, 8]])

Find the maximum value in the entire array.
>>> A.max()
8

Find the minimum value of each column.
>>> A.min(axis=0) # np.array([min(A[:,i]) for i in range(3)])
array([0, 1, 2])

Compute the sum of each row.
>>> A.sum(axis=1) # np.array([sum(A[i,:]) for i in range(3)])
array([3, 12, 21])

See http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html for a
more comprehensive list of array methods.

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray. html

68 Lab 4. Introduction to NumPy

Problem 6. A matrix is called row-stochastica if its rows each sum to 1. Stochastic matrices
are fundamentally important for finite discrete random processes and some machine learning
algorithms.

Write a function than accepts a matrix (as a 2-D array). Divide each row of the matrix by
the row sum and return the new row-stochastic matrix. Use array broadcasting and the axis
argument instead of a loop.

aSimilarly, a matrix is called column-stochastic if its columns each sum to 1.

Problem 7. This problem comes from https://projecteuler.net.
In the 20× 20 grid below, four numbers along a diagonal line have been marked in red.

08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08

49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00

81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65

52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91

22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80

24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50

32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70

67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21

24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72

21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95

78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92

16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57

86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58

19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40

04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66

88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69

04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36

20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16

20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54

01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48

The product of these numbers is 26 × 63 × 78 × 14 = 1788696. Write a function that
returns the greatest product of four adjacent numbers in the same direction (up, down, left,
right, or diagonally) in the grid.

For convenience, this array has been saved in the file grid.npy. Use the following syntax
to extract the array:

>>> grid = np.load("grid.npy")

One way to approach this problem is to iterate through the rows and columns of the array,
checking small slices of the array at each iteration and updating the current largest product.
Array slicing, however, provides a much more efficient solution.

https://projecteuler.net

69

The naïve method for computing the greatest product of four adjacent numbers in a
horizontal row might be as follows:

>>> winner = 0
>>> for i in range(20):
... for j in range(17):
... winner = max(np.prod(grid[i,j:j+4]), winner)
...
>>> winner
48477312

Instead, use array slicing to construct a single array where the (i, j)th entry is the product
of the four numbers to the right of the (i, j)th entry in the original grid. Then find the largest
element in the new array.

>>> np.max(grid[:,:-3] * grid[:,1:-2] * grid[:,2:-1] * grid[:,3:])
48477312

Use slicing to similarly find the greatest products of four vertical, right diagonal, and left
diagonal adjacent numbers.
(Hint: Consider drawing the portions of the grid that each slice in the above code covers, like
the examples in the visual guide. Then draw the slices that produce vertical, right diagonal, or
left diagonal sequences, and translate the pictures into slicing syntax.)

Achtung!

All of the examples in this lab use NumPy arrays, objects of type np.ndarray. NumPy also
has a “matrix” data structure called np.matrix that was built specifically for MATLAB users
who are transitioning to Python and NumPy. It behaves slightly differently than the regular
array class, and can cause some unexpected and subtle problems.

For consistency (and your sanity), never use a NumPy matrix; always use NumPy arrays.
If necessary, cast a matrix object as an array with np.array().

70 Lab 4. Introduction to NumPy

Additional Material

Random Sampling

The submodule np.random holds many functions for creating arrays of random values chosen from
probability distributions such as the uniform, normal, and multinomial distributions. It also contains
some utility functions for getting non-distributional random samples, such as random integers or
random samples from a given array.

Function Description
choice() Take random samples from a 1-D array.
random() Uniformly distributed floats over [0, 1).
randint() Random integers over a half-open interval.

random_integers() Random integers over a closed interval.
randn() Sample from the standard normal distribution.

permutation() Randomly permute a sequence / generate a random sequence.

Function Distribution
beta() Beta distribution over [0, 1].

binomial() Binomial distribution.
exponential() Exponential distribution.

gamma() Gamma distribution.
geometric() Geometric distribution.

multinomial() Multivariate generalization of the binomial distribution.
multivariate_normal() Multivariate generalization of the normal distribution.

normal() Normal / Gaussian distribution.
poisson() Poisson distribution.
uniform() Uniform distribution.

Note that many of these functions have counterparts in the standard library’s random module.
These NumPy functions, however, are much better suited for working with large collections of random
samples.

5 uniformly distributed values in the interval [0, 1).
>>> np.random.random(5)
array([0.21845499, 0.73352537, 0.28064456, 0.66878454, 0.44138609])

A 2x5 matrix (2-D array) of integers in the interval [10, 20).
>>> np.random.randint(10, 20, (2,5))
array([[17, 12, 13, 13, 18],

[16, 10, 12, 18, 12]])

Saving and Loading Arrays

It is often useful to save an array as a file for later use. NumPy provides several easy methods for
saving and loading array data.

71

Function Description
save() Save a single array to a .npy file.
savez() Save multiple arrays to a .npz file.

savetxt() Save a single array to a .txt file.
load() Load and return an array or arrays from a .npy or .npz file.

loadtxt() Load and return an array from a text file.

Save a 100x100 matrix of uniformly distributed random values.
>>> x = np.random.random((100,100))
>>> np.save("uniform.npy", x) # Or np.savetxt("uniform.txt", x).

Read the array from the file and check that it matches the original.
>>> y = np.load("uniform.npy") # Or np.loadtxt("uniform.txt").
>>> np.allclose(x, y) # Check that x and y are close entry-wise.
True

To save several arrays to a single file, specify a keyword argument for each array in np.savez().
Then np.load() will return a dictionary-like object with the keyword parameter names from the
save command as the keys.

Save two 100x100 matrices of normally distributed random values.
>>> x = np.random.randn(100,100)
>>> y = np.random.randn(100,100)
>>> np.savez("normal.npz", first=x, second=y)

Read the arrays from the file and check that they match the original.
>>> arrays = np.load("normal.npz")
>>> np.allclose(x, arrays["first"])
True
>>> np.allclose(y, arrays["second"])
True

72 Lab 4. Introduction to NumPy

5 Introduction to
Matplotlib

Lab Objective: Matplotlib is the most commonly used data visualization library in Python. Being
able to visualize data helps to determine patterns, to communicate results, and is a key component of
applied and computational mathematics. In this lab we introduce techniques for visualizing data in
1, 2, and 3 dimensions. The plotting techniques presented here will be used in the remainder of the
labs in the manual.

Line Plots
Raw numerical data is rarely helpful unless it can be visualized. The quickest way to visualize a
simple 1-dimensional array is via a line plot. The following code creates an array of outputs of the
function f(x) = x2, then visualizes the array using the matplotlib module.1

>>> import numpy as np
>>> from matplotlib import pyplot as plt

>>> y = np.arange(-5,6)**2
>>> y
array([25, 16, 9, 4, 1, 0, 1, 4, 9, 16, 25])

Visualize the plot.
>>> plt.plot(y) # Draw the line plot.
[<matplotlib.lines.Line2D object at 0x1084762d0>]
>>> plt.show() # Reveal the resulting plot.

The result is shown in Figure 5.1a. Just as np is a standard alias for NumPy, plt is a standard
alias for matplotlib.pyplot in the Python community.

The call plt.plot(y) creates a figure and draws straight lines connecting the entries of y
relative to the y-axis. The x-axis is (by default) the index of the array, which in this case is the
integers from 0 to 10. Calling plt.show() then displays the figure.

1Like NumPy, Matplotlib is not part of the Python standard library, but it is included in most Python distributions.

73

74 Lab 5. Introduction to Matplotlib

0 2 4 6 8 10
0

5

10

15

20

25

(a) plt.plot(y) uses the indices of
the array for the x-axis.

4 2 0 2 4
0

5

10

15

20

25

(b) plt.plot(x,y) specifies both the
domain and the range.

Figure 5.1: Plots of f(x) = x2 over the interval [−5, 5].

Problem 1. NumPy’s random module has tools for sampling from probability distributions.
For instance, np.random.normal() draws samples from the normal (Gaussian) distribution.
The size parameter specifies the shape of the resulting array.

>>> np.random.normal(size=(2,3)) # Get a 2x3 array of samples.
array([[1.65896515, -0.43236783, -0.99390897],

[-0.35753688, -0.76738306, 1.29683025]])

Write a function that accepts an integer n as input.

1. Use np.random.normal() to create an n× n array of values randomly sampled from the
standard normal distribution.

2. Compute the mean of each row of the array.
(Hint: Use np.mean() and specify the axis keyword argument.)

3. Return the variance of these means.
(Hint: Use np.var() to calculate the variance).

Define another function that creates an array of the results of the first function with inputs
n = 100, 200, . . . , 1000. Plot (and show) the resulting array.

Specifying a Domain

An obvious problem with Figure 5.1a is that the x-axis does not correspond correctly to the y-axis
for the function f(x) = x2 that is being drawn. To correct this, define an array x for the domain,
then use it to calculate the image y = f(x). The command plt.plot(x,y) plots x against y by
drawing a line between the consecutive points (x[i], y[i]).

Another problem with Figure 5.1a is its poor resolution: the curve is visibly bumpy, especially
near the bottom of the curve. NumPy’s linspace() function makes it easy to get a higher-resolution
domain. Recall that np.arange() return an array of evenly-spaced values in a given interval, where

75

the spacing between the entries is specified. In contrast, np.linspace() creates an array of evenly-
spaced values in a given interval where the number of elements is specified.

Get 4 evenly-spaced values between 0 and 32 (including endpoints).
>>> np.linspace(0, 32, 4)
array([0. , 10.66666667, 21.33333333, 32.])

Get 50 evenly-spaced values from -5 to 5 (including endpoints).
>>> x = np.linspace(-5, 5, 50)
>>> y = x**2 # Calculate the range of f(x) = x**2.
>>> plt.plot(x, y)
>>> plt.show()

The resulting plot is shown in Figure 5.1b. This time, the x-axis correctly matches up with the
y-axis. The resolution is also much better because x and y have 50 entries each instead of only 10.

Subsequent calls to plt.plot() modify the same figure until plt.show() is executed, which
displays the current figure and resets the system. This behavior can be altered by specifying separate
figures or axes, which we will discuss shortly.

Note

Plotting can seem a little mystical because the actual plot doesn’t appear until plt.show() is
executed. Matplotlib’s interactive mode allows the user to see the plot be constructed one piece
at a time. Use plt.ion() to turn interactive mode on and plt.ioff() to turn it off. This is
very useful for quick experimentation. Try executing the following commands in IPython:

In [1]: import numpy as np
In [2]: from matplotlib import pyplot as plt

Turn interactive mode on and make some plots.
In [3]: plt.ion()
In [4]: x = np.linspace(1, 4, 100)
In [5]: plt.plot(x, np.log(x))
In [6]: plt.plot(x, np.exp(x))

Clear the figure, then turn interactive mode off.
In [7]: plt.clf()
In [8]: plt.ioff()

Use interactive mode only with IPython. Using interactive mode in a non-interactive
setting may freeze the window or cause other problems.

Problem 2. Write a function that plots the functions sin(x), cos(x), and arctan(x) on the
domain [−2π, 2π] (use np.pi for π). Make sure the domain is refined enough to produce a
figure with good resolution.

76 Lab 5. Introduction to Matplotlib

Plot Customization
plt.plot() receives several keyword arguments for customizing the drawing. For example, the color
and style of the line are specified by the following string arguments.

Key Color
'b' blue
'g' green
'r' red
'c' cyan
'k' black

Key Style
'-' solid line

'--' dashed line
'-.' dash-dot line
':' dotted line
'o' circle marker

Specify one or both of these string codes as the third argument to plt.plot() to change from
the default color and style. Other plt functions further customize a figure.

Function Description
legend() Place a legend in the plot
title() Add a title to the plot

xlim() / ylim() Set the limits of the x- or y-axis
xlabel() / ylabel() Add a label to the x- or y-axis

>>> x1 = np.linspace(-2, 4, 100)
>>> plt.plot(x1, np.exp(x1), 'g:', linewidth=6, label="Exponential")
>>> plt.title("This is the title.", fontsize=18)
>>> plt.legend(loc="upper left") # plt.legend() uses the 'label' argument of
>>> plt.show() # plt.plot() to create a legend.

>>> x2 = np.linspace(1, 4, 100)
>>> plt.plot(x2, np.log(x2), 'r*', markersize=4)
>>> plt.xlim(0, 5) # Set the visible limits of the x axis.
>>> plt.xlabel("The x axis") # Give the x axis a label.
>>> plt.show()

2 1 0 1 2 3 4
The x axis.

0

10

20

30

40

50

This is the title.
Exponential

0 1 2 3 4 5
The x axis

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

This is the title.

77

Problem 3. Write a function to plot the curve f(x) = 1
x−1 on the domain [−2, 6].

1. Although f(x) has a discontinuity at x = 1, a single call to plt.plot() in the usual way
will make the curve look continuous. Split up the domain into [−2, 1) and (1, 6]. Plot the
two sides of the curve separately so that the graph looks discontinuous at x = 1.

2. Plot both curves with a dashed magenta line. Set the keyword argument linewidth (or
lw) of plt.plot() to 4 to make the line a little thicker than the default setting.

3. Use plt.xlim() and plt.ylim() to change the range of the x-axis to [−2, 6] and the
range of the y-axis to [−6, 6].

The plot should resemble the figure below.

2 1 0 1 2 3 4 5 6
6

4

2

0

2

4

6

Figures, Axes, and Subplots

The window that plt.show() reveals is called a figure, stored in Python as a plt.Figure object.
A space on a figure where a plot is drawn is called an axes, a plt.Axes object. A figure can have
multiple axes, and a single program may create several figures. There are several ways to create or
grab figures and axes with plt functions.

Function Description
axes() Add an axes to the current figure

figure() Create a new figure or grab an existing figure
gca() Get the current axes
gcf() Get the current figure

subplot() Add a single subplot to the current figure
subplots() Create a figure and add several subplots to it

Usually when a figure has multiple axes, they are organized into non-overlapping subplots.
The command plt.subplot(nrows, ncols, plot_number) creates an axes in a subplot grid where
numrows is the number of rows of subplots in the figure, numcols is the number of columns, and
plot_number specifies which subplot to modify. If the inputs for plt.subplot() are all integers, the
commas between the entries can be omitted. For example, plt.subplot(3,2,2) can be shortened
to plt.subplot(322).

78 Lab 5. Introduction to Matplotlib

1 2 3

4 5 6
Figure 5.3: The layout of subplots with plt.subplot(2,3,i) (2 rows, 3 columns), where i is the
index pictured above. The outer border is the figure that the axes belong to.

>>> x = np.linspace(.1, 2, 200)
Create a subplot to cover the left half of the figure.
>>> ax1 = plt.subplot(121)
>>> ax1.plot(x, np.exp(x), 'k', lw=2)
>>> ax1.plot(x, np.exp(2*x), 'b', lw=2)
>>> plt.title("Exponential", fontsize=18)

Create another subplot to cover the right half of the figure.
>>> ax2 = plt.subplot(122)
>>> ax2.plot(x, np.log(x), 'k', lw=2)
>>> ax2.plot(x, np.log(2*x), 'b', lw=2)
>>> ax2.set_title("Logarithmic", fontsize=18)
>>> plt.show()

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

10

20

30

40

50

Exponential

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

2

1

0

1

Logarithmic

79

Note

Plotting functions such as plt.plot() are shortcuts for accessing the current axes on the current
figure and calling a method on that Axes object. Calling plt.subplot() changes the current
axis, and calling plt.figure() changes the current figure. Use plt.gca() to get the current
axes and plt.gcf() to get the current figure. Compare the following equivalent strategies for
producing a figure with two subplots.

>>> x = np.linspace(-5, 5, 100)

1. Use plt.subplot() to switch the current.
>>> plt.subplot(121)
>>> plt.plot(x, 2*x)
>>> plt.subplot(122)
>>> plt.plot(x, x**2)

2. Use plt.subplot() to explicitly grab the two subplot axes.
>>> ax1 = plt.subplot(121)
>>> ax1.plot(x, 2*x)
>>> ax2 = plt.subplot(122)
>>> ax2.plot(x, x**2)

3. Use plt.subplots() to get the figure and all subplots simultaneously.
>>> fig, axes = plt.subplots(1, 2)
>>> axes[0].plot(x, 2*x)
>>> axes[1].plot(x, x**2)

Problem 4. Write a function that plots the functions sin(x), sin(2x), 2 sin(x), and 2 sin(2x)

on the domain [0, 2π], each in a separate subplot of a single figure.

1. Arrange the plots in a 2× 2 grid of subplots.

2. Set the limits of each subplot to [0, 2π]× [−2, 2].
(Hint: Consider using plt.axis([xmin, xmax, ymin, ymax]) instead of plt.xlim()
and plt.ylim() to set all boundaries simultaneously.)

3. Use plt.title() or ax.set_title() to give each subplot an appropriate title.

4. Use plt.suptitle() or fig.suptitle() to give the overall figure a title.

5. Use the following colors and line styles.

sin(x): green solid line. sin(2x): red dashed line.

2 sin(x): blue dashed line. 2 sin(2x): magenta dotted line.

80 Lab 5. Introduction to Matplotlib

Achtung!

Be careful not to mix up the following functions.

1. plt.axes() creates a new place to draw on the figure, while plt.axis() (or ax.axis())
sets properties of the x- and y-axis in the current axes, such as the x and y limits.

2. plt.subplot() (singular) returns a single subplot belonging to the current figure, while
plt.subplots() (plural) creates a new figure and adds a collection of subplots to it.

Other Kinds of Plots
Line plots are not always the most illuminating choice of graph to describe a set of data. Matplotlib
provides several other easy ways to visualize data.

• A scatter plot plots two 1-dimensional arrays against each other without drawing lines between
the points. Scatter plots are particularly useful for data that is not correlated or ordered.

To create a scatter plot, use plt.plot() and specify a point marker (such as 'o' or '*') for
the line style, or use plt.scatter() (or ax.scatter()). Beware that plt.scatter() has
slightly different arguments and syntax than plt.plot().

• A histogram groups entries of a 1-dimensional data set into a given number of intervals, called
bins. Each bin has a bar whose height indicates the number of values that fall in the range of
the bin. Histograms are best for displaying distributions, relating data values to frequency.

To create a histogram, use plt.hist() (or ax.hist()). Use the argument bins to specify the
edges of the bins, or to choose a number of bins. The range argument specifies the outer limits
of the first and last bins.

Get 500 random samples from two normal distributions.
>>> x = np.random.normal(scale=1.5, size=500)
>>> y = np.random.normal(scale=0.5, size=500)

Draw a scatter plot of x against y, using transparent circle markers.
>>> ax1 = plt.subplot(121)
>>> ax1.plot(x, y, 'o', markersize=5, alpha=.5)

Draw a histogram to display the distribution of the data in x.
>>> ax2 = plt.subplot(122)
>>> ax2.hist(x, bins=np.arange(-4.5, 5.5)) # Or, equivalently,
ax2.hist(x, bins=9, range=[-4.5, 4.5])

>>> plt.show()

81

4 2 0 2 4

1.5

1.0

0.5

0.0

0.5

1.0

1.5

4 2 0 2 4
0

20

40

60

80

100

120

Problem 5. The Fatality Analysis Reporting System (FARS) is a nationwide census that
provides yearly data regarding fatal injuries suffered in motor vehicle traffic crashes.a The
array contained in FARS.npy is a small subset of the FARS database from 2010–2014. Each of
the 148,206 rows in the array represents a different car crash; the columns represent the hour
(in military time, as an integer), the longitude, and the latitude, in that order.

Write a function to visualize the data in FARS.npy. Use np.load() to load the data, then
create a single figure with two subplots:

1. A scatter plot of longitudes against latitudes. Because of the large number of data points,
use black pixel markers (use "k," as the third argument to plt.plot()). Label both axes
using plt.xlabel() and plt.ylabel() (or ax.set_xlabel() and ax.set_ylabel()).
(Hint: Use plt.axis("equal") or ax.set_aspect("equal") so that the x- and y-axis
are scaled the same way.

2. A histogram of the hours of the day, with one bin per hour. Set the limits of the x-axis
appropriately. Label the x-axis. You should be able to clearly see which hours of the day
experience more traffic.

aSee http://www.nhtsa.gov/FARS.

Matplotlib also has tools for creating other kinds of plots for visualizing 1-dimensional data,
including bar plots and box plots. See the Matplotlib Appendix for examples and syntax.

Visualizing 3-D Surfaces

Line plots, histograms, and scatter plots are good for visualizing 1- and 2-dimensional data, including
the domain and range of a function f : R→ R. However, visualizing 3-dimensional data or a function
g : R2 → R (two inputs, one output) requires a different kind of plot. The process is similar to creating
a line plot but requires slightly more setup: first construct an appropriate domain, then calculate
the image of the function on that domain.

NumPy’s np.meshgrid() function is the standard tool for creating a 2-dimensional domain
in the Cartesian plane. Given two 1-dimensional coordinate arrays, np.meshgrid() creates two
corresponding coordinate matrices. See Figure 5.6.

http://www.nhtsa.gov/FARS

82 Lab 5. Introduction to Matplotlib

(0,0)

(0,1)

(0,2)

(1,0)

(1,1)

(1,2)

(2,0)

(2,1)

(2,2)

0

1

2

0

1

2

0

1

2

0

0

0

1

1

1

2

2

2

Y=

X=

x=
[
0, 1, 2

]

y= [2,
1,

0]
Figure 5.6: np.meshgrid(x, y), returns the arrays X and Y. The returned arrays give the x- and
y-coordinates of the points in the grid formed by x and y. Specifically, the arrays X and Y satisfy
(X[i,j], Y[i,j]) = (x[i],y[j]).

>>> x, y = [0, 1, 2], [3, 4, 5] # A rough domain over [0,2]x[3,5].
>>> X, Y = np.meshgrid(x, y) # Combine the 1-D data into 2-D data.
>>> for xrow, yrow in zip(X,Y):
... print(xrow, yrow, sep='\t')
...
[0 1 2] [3 3 3]
[0 1 2] [4 4 4]
[0 1 2] [5 5 5]

With a 2-dimensional domain, g(x, y) is usually visualized with two kinds of plots.

• A heat map assigns a color to each point in the domain, producing a 2-dimensional colored
picture describing a 3-dimensional shape. Darker colors typically correspond to lower values
while lighter colors typically correspond to higher values.

Use plt.pcolormesh() to create a heat map.

• A contour map draws several level curves of g on the 2-dimensional domain. A level curve
corresponding to the constant c is the collection of points {(x, y) | c = g(x, y)}. Coloring the
space between the level curves produces a discretized version of a heat map. Including more
and more level curves makes a filled contour plot look more and more like the complete, blended
heat map.

Use plt.contour() to create a contour plot and plt.contourf() to create a filled contour
plot. Specify either the number of level curves to draw, or a list of constants corresponding to
specific level curves.

These functions each receive the keyword argument cmap to specify a color scheme (some of
the better schemes are "viridis", "magma", and "coolwarm"). For the list of all Matplotlib color
schemes, see http://matplotlib.org/examples/color/colormaps_reference.html.

Finally, plt.colorbar() draws the color scale beside the plot to indicate how the colors relate
to the values of the function.

http://matplotlib.org/examples/color/colormaps_reference.html

83

Create a 2-D domain with np.meshgrid().
>>> x = np.linspace(-np.pi, np.pi, 100)
>>> y = x.copy()
>>> X, Y = np.meshgrid(x, y)
>>> Z = np.sin(X) * np.sin(Y) # Calculate g(x,y) = sin(x)sin(y).

Plot the heat map of f over the 2-D domain.
>>> plt.subplot(131)
>>> plt.pcolormesh(X, Y, Z, cmap="viridis")
>>> plt.colorbar()
>>> plt.xlim(-np.pi, np.pi)
>>> plt.ylim(-np.pi, np.pi)

Plot a contour map of f with 10 level curves.
>>> plt.subplot(132)
>>> plt.contour(X, Y, Z, 10, cmap="coolwarm")
>>> plt.colorbar()

Plot a filled contour map, specifying the level curves.
>>> plt.subplot(133)
>>> plt.contourf(X, Y, Z, [-1, -.8, -.5, 0, .5, .8, 1], cmap="magma")
>>> plt.colorbar()
>>> plt.show()

3 2 1 0 1 2 3
3

2

1

0

1

2

3

0.8
0.6
0.4
0.2

0.0
0.2
0.4
0.6
0.8

3 2 1 0 1 2 3
3

2

1

0

1

2

3

1.0

0.8

0.5

0.0

0.5

0.8

1.0

Problem 6. Write a function to plot g(x, y) = sin(x) sin(y)
xy on the domain [−2π, 2π]× [−2π, 2π].

1. Create 2 subplots: one with a heat map of g, and one with a contour map of g. Choose
an appropriate number of level curves, or specify the curves yourself.

2. Set the limits of each subplot to [−2π, 2π]× [−2π, 2π].

3. Choose a non-default color scheme.

4. Include the color scale bar for each subplot.

84 Lab 5. Introduction to Matplotlib

Additional Material

Further Reading and Tutorials

Plotting takes some getting used to. See the following materials for more examples.

• https://www.labri.fr/perso/nrougier/teaching/matplotlib/.

• https://matplotlib.org/users/pyplot_tutorial.html.

• http://www.scipy-lectures.org/intro/matplotlib/matplotlib.html.

• The Matplotlib Appendix in this manual.

3-D Plotting

Matplotlib can also be used to plot 3-dimensional surfaces. The following code produces the surface
corresponding to g(x, y) = sin(x) sin(y).

Create the domain and calculate the range like usual.
>>> x = np.linspace(-np.pi, np.pi, 200)
>>> y = np.copy(x)
>>> X, Y = np.meshgrid(x, y)
>>> Z = np.sin(X) * np.sin(Y)

Draw the corresponding 3-D plot using some extra tools.
>>> from mpl_toolkits.mplot3d import Axes3D
>>> fig = plt.figure()
>>> ax = fig.add_subplot(1,1,1, projection='3d')
>>> ax.plot_surface(X, Y, Z)
>>> plt.show()

3 2 1 0 1 2 3 32
10
12

3

0.75
0.50
0.25

0.00
0.25
0.50
0.75

https://www.labri.fr/perso/nrougier/teaching/matplotlib/
https://matplotlib.org/users/pyplot_tutorial.html
http://www.scipy-lectures.org/intro/matplotlib/matplotlib.html

85

Animations

Lines and other graphs can be altered dynamically to produce animations. Follow these steps to
create a Matplotlib animation:

1. Calculate all data that is needed for the animation.

2. Define a figure explicitly with plt.figure() and set its window boundaries.

3. Draw empty objects that can be altered dynamically.

4. Define a function to update the drawing objects.

5. Use matplotlib.animation.FuncAnimation().

The submodule matplotlib.animation contains the tools for putting together and managing
animations. The function matplotlib.animation.FuncAnimation() accepts the figure to animate,
the function that updates the figure, the number of frames to show before repeating, and how fast
to run the animation (lower numbers mean faster animations).

from matplotlib.animation import FuncAnimation

def sine_animation():
Calculate the data to be animated.
x = np.linspace(0, 2*np.pi, 200)[:-1]
y = np.sin(x)

Create a figure and set the window boundaries of the axes.
fig = plt.figure()
plt.xlim(0, 2*np.pi)
plt.ylim(-1.2, 1.2)

Draw an empty line. The comma after 'drawing' is crucial.
drawing, = plt.plot([],[])

Define a function that updates the line data.
def update(index):

drawing.set_data(x[:index], y[:index])
return drawing, # Note the comma!

a = FuncAnimation(fig, update, frames=len(x), interval=10)
plt.show()

Try using the following function in place of update(). Can you explain why this animation is
different from the original?

def wave(index):
drawing.set_data(x, np.roll(y, index))
return drawing,

To animate multiple objects at once, define the objects separately and make sure the update
function returns both objects.

86 Lab 5. Introduction to Matplotlib

def sine_cosine_animation():
x = np.linspace(0, 2*np.pi, 200)[:-1]
y1, y2 = np.sin(x), np.cos(x)

fig = plt.figure()
plt.xlim(0, 2*np.pi)
plt.ylim(-1.2, 1.2)

sin_drawing, = plt.plot([],[])
cos_drawing, = plt.plot([],[])

def update(index):
sin_drawing.set_data(x[:index], y1[:index])
cos_drawing.set_data(x[:index], y2[:index])
return sin_drawing, cos_drawing,

a = FuncAnimation(fig, update, frames=len(x), interval=10)
plt.show()

Animations can also be 3-dimensional. The only major difference is an extra operation to
set the 3-dimensional component of the drawn object. The code below animates the space curve
parametrized by the following equations:

x(θ) = cos(θ) cos(6θ), y(θ) = sin(θ) cos(6θ), z(θ) = θ
10

def rose_animation_3D():
theta = np.linspace(0, 2*np.pi, 200)
x = np.cos(theta) * np.cos(6*theta)
y = np.sin(theta) * np.cos(6*theta)
z = theta / 10

fig = plt.figure()
ax = fig.gca(projection='3d') # Make the figure 3-D.
ax.set_xlim3d(-1.2, 1.2) # Use ax instead of plt.
ax.set_ylim3d(-1.2, 1.2)
ax.set_aspect("equal")

drawing, = ax.plot([],[],[]) # Provide 3 empty lists.

Update the first 2 dimensions like usual, then update the 3-D component.
def update(index):

drawing.set_data(x[:index], y[:index])
drawing.set_3d_properties(z[:index])
return drawing,

a = FuncAnimation(fig, update, frames=len(x), interval=10, repeat=False)
plt.show()

6 Exceptions and File
Input/Ouput

Lab Objective: In Python, an exception is an error detected during execution. Exceptions
are important for regulating program usage and for correctly reporting problems to the programmer
and end user. An understanding of exceptions is essential to safely read data from and write data
to external files, and being able to interact with external files is important for analyzing data and
communicating results. In this lab we learn exception syntax and file interaction protocols.

Exceptions
An exception formally indicates an error and terminates the program early. Some of the more common
exception types are listed below, along with the kinds of problems that they typically indicate.

Exception Indication
AttributeError An attribute reference or assignment failed.

ImportError An import statement failed.
IndexError A sequence subscript was out of range.
NameError A local or global name was not found.
TypeError An operation or function was applied to an object of

inappropriate type.
ValueError An operation or function received an argument that had

the right type but an inappropriate value.
ZeroDivisionError The second argument of a division or modulo operation was zero.

>>> print(x)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'x' is not defined

>>> [1, 2, 3].fly()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: 'list' object has no attribute 'fly'

87

88 Lab 6. Exceptions and File Input/Output

Raising Exceptions

Most exceptions are due to coding mistakes and typos. However, exceptions can also be used inten-
tionally to indicate a problem to the user or programmer. To create an exception, use the keyword
raise, followed by the name of the exception class. As soon as an exception is raised, the program
stops running unless the exception is handled properly.

>>> if 7 is not 7.0: # Raise an exception with an error message.
... raise Exception("ints and floats are different!")
...
Traceback (most recent call last):
File "<stdin>", line 2, in <module>

Exception: ints and floats are different!

>>> for x in range(10):
... if x > 5: # Raise a specific kind of exception.
... raise ValueError("'x' should not exceed 5.")
... print(x, end=' ')
...
0 1 2 3 4 5
Traceback (most recent call last):
File "<stdin>", line 3, in <module>

ValueError: 'x' should not exceed 5.

Problem 1. Consider the following arithmetic “magic” trick.

1. Choose a 3-digit number where the first and last digits differ by 2 or more (say, 123).

2. Reverse this number by reading it backwards (321).

3. Calculate the positive difference of these numbers (321− 123 = 198).

4. Add the reverse of the result to itself (198 + 891 = 1089).

The result of the last step will always be 1089, regardless of the original number chosen in step
1 (can you explain why?).

The following function prompts the user for input at each step of the magic trick, but
does not check that the user’s inputs are correct.

def arithmagic():
step_1 = input("Enter a 3-digit number where the first and last "

"digits differ by 2 or more: ")
step_2 = input("Enter the reverse of the first number, obtained "

"by reading it backwards: ")
step_3 = input("Enter the positive difference of these numbers: ")
step_4 = input("Enter the reverse of the previous result: ")
print(str(step_3), "+", str(step_4), "= 1089 (ta-da!)")

89

Modify arithmagic() so that it verifies the user’s input at each step. Raise a ValueError
with an informative error message if any of the following occur:

• The first number (step_1) is not a 3-digit number.

• The first number’s first and last digits differ by less than 2.

• The second number (step_2) is not the reverse of the first number.

• The third number (step_3) is not the positive difference of the first two numbers.

• The fourth number (step_4) is not the reverse of the third number.

(Hint: input() always returns a string, so each variable is a string initially. Use int() to cast
the variables as integers when necessary. The built-in function abs() may also be useful.)

Handling Exceptions

To prevent an exception from halting the program, it must be handled by placing the problematic
lines of code in a try block. An except block then follows with instructions for what to do in the
event of an exception.

The 'try' block should hold any lines of code that might raise an exception.
>>> try:
... print("Entering try block...")
... raise Exception("for no reason")
... print("No problem!") # This line gets skipped.
... # The 'except' block is executed just after the exception is raised.
... except Exception as e:
... print("There was a problem:", e)
...
Entering try block...
There was a problem: for no reason
>>> # The program then continues on.

In this example, the name e represents the exception within the except block. Printing e
displays its error message. If desired, e can be raised again with raise e or just raise.

The try-except control flow can be expanded with two other blocks, forming a code structure
similar to a sequence of if-elif-else blocks.

1. The try block is executed until an exception is raised (if at all).

2. An except statement specifying the same kind of exception that was raised in the try block
“catches” the exception, and the block is then executed. There may be multiple except blocks
following a single try block (similiar to having several elif statements following a single if
statement), and a single except statement may specify multiple kinds of exceptions to catch.

3. The else block is executed if an exception was not raised in the try block.

4. The finally block is always executed if it is included.

90 Lab 6. Exceptions and File Input/Output

>>> try:
... print("Entering try block...", end='')
... house_on_fire = False
... raise ValueError("The house is on fire!")
... # Check for multiple kinds of exceptions using parentheses.
... except (ValueError, TypeError) as e:
... print("caught an exception.")
... house_on_fire = True
... else: # Skipped due to the exception.
... print("no exceptions raised.")
... finally:
... print("The house is on fire:", house_on_fire)
...
Entering try block...caught an exception.
The house is on fire: True

>>> try:
... print("Entering try block...", end='')
... house_on_fire = False
... except ValueError as e: # Skipped because there was no exception.
... print("caught a ValueError.")
... house_on_fire = True
... except TypeError as e: # Also skipped.
... print("caught a TypeError.")
... house_on_fire = True
... else:
... print("no exceptions raised.")
... finally:
... print("The house is on fire:", house_on_fire)
...
Entering try block...no exceptions raised.
The house is on fire: False

The code in the finally block is always executed, even if a return statement or an uncaught
exception occurs in any block following the try statement.

>>> def implode():
... try: # Try to return immediately...
... return
... finally: # ...but 'finally' goes before 'return'.
... print("Goodbye, world!")
...
>>> implode()
Goodbye, world!

See https://docs.python.org/3/tutorial/errors.html for more examples.

https://docs.python.org/3/tutorial/errors.html

91

Achtung!

An except statement with no specified exception type catches any exception raised in the
corresponding try block. This approach can mistakenly mask unexpected errors. Always be
specific about the kinds of exceptions you expect to encounter.

>>> def divider(x, y):
... try:
... return x / yy # The mispelled yy raises a NameError.
... except: # Catch ANY exception.
... print("y must not equal zero!")
...
>>> divider(2, 3)
y must not equal zero!

>>> def divider(x, y):
... try:
... return x / yy
... except ZeroDivisionError: # Specify an exception type.
... print("y must not equal zero!")
...
>>> divider(2, 3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in divider

NameError: name 'yy' is not defined # Now the mistake is obvious.

Problem 2. A random walk is a path created by a sequence of random steps. The following
function simulates a random walk by repeatedly adding or subtracting 1 to a running total.

from random import choice

def random_walk(max_iters=1e12):
walk = 0
directions = [1, -1]
for i in range(int(max_iters)):

walk += choice(directions)
return walk

A KeyboardInterrupt is a special exception that can be triggered at any time by entering
ctrl+c (on most systems) in the keyboard. Modify random_walk() so that if the user raises a
KeyboardInterrupt by pressing ctrl+c while the program is running, the function catches the
exception and prints “Process interrupted at iteration i”. If no KeyboardInterrupt is raised,
print “Process completed”. In both cases, return walk as before.

92 Lab 6. Exceptions and File Input/Output

Note

The built-in exceptions are organized into a class hierarchy. For example, the ValueError
class inherits from the generic Exception class. Thus a ValueError is a Exception, but a
Exception is not a ValueError.

>>> try:
... raise ValueError("caught!")
... except Exception as e: # A ValueError is a Exception.
... print(e)
...
caught! # The exception was caught.

>>> try:
... raise Exception("not caught!")
... except ValueError as e: # A Exception is not a ValueError.
... print(e)
...
Traceback (most recent call last):
File "<stdin>", line 2, in <module>

Exception: not caught! # The exception wasn't caught!

See https://docs.python.org/3/library/exceptions.html for the complete list of
built-in exceptions and the exception class hierarchy.

File Input and Output
A file object acts as an interface to a file stream, meaning it allows a program to read from or write
to external files. The built-in function open() creates a file object. It accepts the name of the file
to open and an editing mode. The mode determines the kind of access that the user has to the file.
There are four common modes:

'r': read. Open an existing file for reading. The file must already exist, or open() raises a
FileNotFoundError. This is the default mode.

'w': write. Create a new file or overwrite an existing file (careful!) and open it for writing.

'x': write new. Create a new file and open it for writing. If the file already exists, open() raises
a FileExistsError. This is a safer form of 'w' because it never overwrites existing files.

'a': append. Open a file for writing, appending new data to the end of the file if it already exists.

>>> myfile = open("hello_world.txt", 'r') # Open a file for reading.
>>> print(myfile.read()) # Print the contents of the file.
Hello, # (it's a really small file.)
World!

>>> myfile.close() # Close the file connection.

https://docs.python.org/3/library/exceptions.html

93

The With Statement

An IOError indicates that some input or output operation has failed. A simple try-finally control
flow can ensure that a file stream is closed safely.

The with statement provides an alternative method for safely opening and closing files. Use
with open(<filename>, <mode>) as <alias>: to create an indented block in which the file is open
and available under the specified alias. At the end of the block, the file is automatically and safely
closed, even in the event of an exception. This is the preferred file-reading method when a file only
needs to be accessed briefly.

>>> myfile = open("hello_world.txt", 'r') # Open a file for reading.
>>> try:
... contents = myfile.readlines() # Read in the content by line.
... finally:
... myfile.close() # Explicitly close the file.

Equivalently, use a 'with' statement to take care of errors.
>>> with open("hello_world.txt", 'r') as myfile:
... contents = myfile.readlines()
... # The file is closed automatically.

In both cases, if the file hello_world.txt does not exist in the current directory, open() raises
a FileNotFoundError. However, errors in the try or with blocks do not prevent the file from being
safely closed.

Reading and Writing

Open file objects have an implicit cursor that determines the location in the file to read from or
write to. After the entire file has been read once, either the file must be closed and reopened, or the
cursor must be reset to the beginning of the file with seek(0) before it can be read again.

Some of more important file object attributes and methods are listed below.

Attribute Description
closed True if the object is closed.
mode The access mode used to open the file object.
name The name of the file.

Method Description
close() Close the connection to the file.
read() Read a given number of bytes; with no input, read the entire file.

readline() Read a line of the file, including the newline character at the end.
readlines() Call readline() repeatedly and return a list of the resulting lines.

seek() Move the cursor to a new position.
tell() Report the current position of the cursor.
write() Write a single string to the file (spaces are not added).

writelines() Write a list of strings to the file (newline characters are not added).

Only strings can be written to files; to write a non-string type, first cast it as a string with
str(). Be mindful of spaces and newlines to separate the data.

94 Lab 6. Exceptions and File Input/Output

>>> with open("out.txt", 'w') as outfile: # Open 'out.txt' for writing.
... for i in range(10):
... outfile.write(str(i**2)+' ') # Write some strings (and spaces).
...
>>> outfile.closed # The file is closed automatically.
True

Problem 3. Define a class called ContentFilter. Implement the constructor so that it accepts
the name of a file to be read.

1. If the file name is invalid in any way, prompt the user for another filename using input().
Continue prompting the user until they provide a valid filename.

>>> cf1 = ContentFilter("hello_world.txt") # File exists.
>>> cf2 = ContentFilter("not-a-file.txt") # File doesn't exist.
Please enter a valid file name: still-not-a-file.txt
Please enter a valid file name: hello_world.txt
>>> cf3 = ContentFilter([1, 2, 3]) # Not even a string.
Please enter a valid file name: hello_world.txt

(Hint: open() might raise a FileNotFoundError, a TypeError, or an OSError.)

2. Read the file and store its name and contents as attributes (store the contents as a single
string). Make sure the file is securely closed.

String Formatting
The str class has several useful methods for parsing and formatting strings. They are particularly
useful for processing data from a source file and for preparing data to be written to an external file.

Method Returns
count() The number of times a given substring occurs within the string.
find() The lowest index where a given substring is found.

isalpha() True if all characters in the string are alphabetic (a, b, c, . . .).
isdigit() True if all characters in the string are digits (0, 1, 2, . . .).
isspace() True if all characters in the string are whitespace (" ", '\t', '\n').

join() The concatenation of the strings in a given iterable with a
specified separator between entries.

lower() A copy of the string converted to lowercase.
upper() A copy of the string converted to uppercase.

replace() A copy of the string with occurrences of a given substring
replaced by a different specified substring.

split() A list of segments of the string, using a given character or string
as a delimiter.

strip() A copy of the string with leading and trailing whitespace removed.

95

The join() method translates a list of strings into a single string by concatenating the entries
of the list and placing the principal string between the entries. Conversely, split() translates the
principal string into a list of substrings, with the separation determined by the a single input.

str.join() puts the string between the entries of a list.
>>> words = ["state", "of", "the", "art"]
>>> "-".join(words)
'state-of-the-art'

str.split() creates a list out of a string, given a delimiter.
>>> "One fish\nTwo fish\nRed fish\nBlue fish\n".split('\n')
['One fish', 'Two fish', 'Red fish', 'Blue fish', '']

If no delimiter is provided, the string is split by whitespace characters.
>>> "One fish\nTwo fish\nRed fish\nBlue fish\n".split()
['One', 'fish', 'Two', 'fish', 'Red', 'fish', 'Blue', 'fish']

Can you tell the difference between the following routines?

>>> with open("hello_world.txt", 'r') as myfile:
... contents = myfile.readlines()
...
>>> with open("hello_world.txt", 'r') as myfile:
... contents = myfile.read().split('\n')

Problem 4. Add the following methods to the ContentFilter class for writing the contents
of the original file to new files. Each method should accept a the name of a file to write to and
a keyword argument mode that specifies the file access mode, defaulting to 'w'. If mode is not
'w', 'x', or 'a', raise a ValueError with an informative message.

1. uniform(): write the data to the outfile with uniform case. Include an additional keyword
argument case that defaults to "upper".

If case="upper", write the data in upper case. If case="lower", write the data in lower
case. If case is not one of these two values, raise a ValueError.

2. reverse(): write the data to the outfile in reverse order. Include an additional keyword
argument unit that defaults to "line".

If unit="word", reverse the ordering of the words in each line, but write the lines in the
same order as the original file. If unit="line", reverse the ordering of the lines, but do
not change the ordering of the words on each individual line. If unit is not one of these
two values, raise a ValueError.

3. transpose(): write a “transposed” version of the data to the outfile. That is, write the
first word of each line of the data to the first line of the new file, the second word of each
line of the data to the second line of the new file, and so on. Viewed as a matrix of words,
the rows of the input file then become the columns of the output file, and vice versa. You
may assume that there are an equal number of words on each line of the input file.

96 Lab 6. Exceptions and File Input/Output

Also implement the __str__() magic method so that printing a ContentFilter object
yields the following output. You may want to calculate these statistics in the constructor.

Source file: <filename>
Total characters: <The total number of characters in the file>
Alphabetic characters: <The number of letters>
Numerical characters: <The number of digits>
Whitespace characters: <The number of spaces, tabs, and newlines>
Number of lines: <The number of lines>

(Hint: list comprehensions are very useful for some of these functions. For example, what does
[line[::-1] for line in lines] do? What about sum([s.isspace() for s in data])?)

Compare your class to the following example.

cf_example1.txt
A b C
d E f

>>> cf = ContentFilter("cf_example1.txt")
>>> cf.uniform("uniform.txt", mode='w', case="upper")
>>> cf.uniform("uniform.txt", mode='a', case="lower")
>>> cf.reverse("reverse.txt", mode='w', unit="word")
>>> cf.reverse("reverse.txt", mode='a', unit="line")
>>> cf.transpose("transpose.txt", mode='w')

uniform.txt
A B C
D E F
a b c
d e f

reverse.txt
C b A
f E d
d E f
A b C

transpose.txt
A d
b E
C f

97

Additional Material

Custom Exception Classes

Custom exceptions can be defined by writing a class that inherits from some existing exception class.
The generic Exception class is typically the parent class of choice.

>>> class TooHardError(Exception):
... pass
...
>>> raise TooHardError("This lab is impossible!")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

__main__.TooHardError: This lab is impossible!

This may seem like a trivial extension of the Exception class, but it is useful to do because
the interpreter never automatically raises a TooHardError. Any TooHardError must have originated
from a hand-written raise command, making it easier to identify the exact source of the problem.

Chaining Exceptions

Sometimes, especially in large programs, it is useful raise one kind of exception just after catching
another. The two exceptions can be linked together using the from statement. This syntax makes
it possible to see where the error originated from and to “pass it up” to another part of the program
(warning: this feature was added in Python 3).

>>> try:
... raise TooHardError("This lab is impossible!")
... except TooHardError as e:
... raise NotImplementedError("Lab is incomplete") from e
...
Traceback (most recent call last):
File "<stdin>", line 2, in <module>

__main__.TooHardError: This lab is impossible!

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
File "<stdin>", line 4, in <module>

NotImplementedError: Lab is incomplete

More String Formatting Tools

Concatenating string values with non-string values can cumbersome and tedious. The str class’s
format() method makes it easier to insert non-string values into the middle of a string. Write
the desired output in its entirety, replacing non-string values with curly braces {}. Then use the
format() method, entering each replaced value in order.

98 Lab 6. Exceptions and File Input/Output

Join the data using string concatenation.
>>> day, month, year = 10, "June", 2017
>>> print("Is today", day, str(month) + ',', str(year) + "?")
Is today 10 June, 2017?

Join the data using str.format().
>>> print("Is today {} {}, {}?".format(day, month, year))
Is today 10 June, 2017?

This method is extremely flexible and provides many convenient ways to format string output
nicely. Consider the following code for printing out a simple progress bar from within a loop.

>>> iters = int(1e7)
>>> chunk = iters // 20
>>> for i in range(iters):
... print("\r[{:<20}] i = {}".format('='*((i//chunk)+1), i),
... end='', flush=True)
...

Here the string "\r[{:<20}]" used in conjunction with the format() method tells the cursor
to go back to the beginning of the line, print an opening bracket, then print the first argument of
format() left-aligned with at least 20 total spaces before printing the closing bracket. The comma
after the print command suppresses the automatic newline character, keeping the output of each
individual print statement on the same line.

Printing at each iteration dramatically slows down the progression through the loop. How does
the following code solve that problem?

>>> for i in range(iters):
... if not i % chunk:
... print("\r[{:<20}] i = {}".format('='*((i//chunk)+1),i),
... end='', flush=True)
...

See https://docs.python.org/3/library/string.html#format-string-syntax for more ex-
amples and specific syntax for using str.format(). For a more robust progress bar printer, research
the tqdm module.

Standard Library Modules for I/O

The standard library has other tools for input and output operations. For details on each module,
see https://docs.python.org/3/library.

Module Description
csv CSV (comma separated value) file writing and parsing.
io Support for file objects and open().
os Communication with the operating system.

os.path Common path operations such as checking for file existence.
pickle Create portable serialized representations of Python objects.

https://docs.python.org/3/library/string.html#format-string-syntax
https://docs.python.org/3/library

7 Unit Testing

Lab Objective: Finding and fixing programming errors can be difficult and time consuming,
especially in large or complex programs. Unit testing is a formal strategy for finding and eliminating
errors quickly as a program is constructed and for ensuring that the program still works whenever
it is modified. A single unit test checks a small piece code (usually a function or class method) for
correctness, independent of the rest of the program. A well-written collection of unit tests can ensure
that every unit of code functions as intended, thereby certifying that the program is correct. In this
lab, we learn to write unit tests in Python and practice test-driven development. Applying these
principles will greatly speed up the coding process and improve your code quality.

Unit Tests
A unit test verifies a piece of code by running a series of test cases and comparing actual outputs
with expected outputs. Each test case is usually checked with an assert statement, a shortcut for
raising an AssertionError with an optional error message if a boolean statement is false.

Store the result of a boolean expression in a variable.
>>> result = str(5)=='5'

Check the result, raising an error if it is false.
>>> if result is False:
... raise AssertionError("incorrect result")

Do the same check in one line with an assert statement.
>>> assert result, "incorrect result"

Asserting a false statement raises an AssertionError.
>>> assert 5=='5', "5 is not a string"
Traceback (most recent call last):
File "<stdin>", line 4, in <module>

AssertionError: 5 is not a string

Now suppose we wanted to test a simple add() function, located in the file specs.py.

99

100 Lab 7. Unit Testing

specs.py

def add(a, b):
"""Add two numbers."""
return a + b

In a corresponding file called test_specs.py, which should contain all of the unit tests for the
code in specs.py, we write a unit test called test_add() to verify the add() function.

test_specs.py
import specs

def test_add():
assert specs.add(1, 3) == 4, "failed on positive integers"
assert specs.add(-5, -7) == -12, "failed on negative integers"
assert specs.add(-6, 14) == 8

In this case, running test_add() raises no errors since all three test cases pass. Unit test
functions don’t need to return anything, but they should raise an exception if a test case fails.

Note

This style of external testing—checking that certain inputs result in certain outputs—is called
black box testing. The actual structure of the code is not considered, but what it produces is
thoroughly examined. In fact, the author of a black box test doesn’t even need to be the person
who eventually writes the program: having one person write tests and another write the code
helps detect problems that one developer or the other may not have caught individually.

PyTest
Python’s pytest module1 provides tools for building tests, running tests, and providing detailed
information about the results. To begin, run py.test in the current directory. Without any test
files, the output should be similar to the following.

$ py.test
============================= test session starts =============================
platform darwin -- Python 3.6.0, pytest-3.0.5, py-1.4.32, pluggy-0.4.0
rootdir: /Users/Student, inifile:
collected 0 items

========================= no tests ran in 0.02 seconds ========================

Given some test files, say test_calendar.py and test_google.py, the output of py.test
identifies failed tests and provides details on why they failed.

1Pytest is not part of the standard libray, but it is included in Anaconda’s Python distribution. Install
pytest with [basicstyle=]conda install pytest if needed. The standard library’s [basicstyle=]unittest
module also provides a testing framework, but is less popular and straightforward than PyTest.

101

$ py.test
============================= test session starts =============================
platform darwin -- Python 3.6.0, pytest-3.0.5, py-1.4.32, pluggy-0.4.0
rootdir: /Users/Student/example_tests, inifile:
collected 12 items

test_calendar.py
test_google.py .F..

================================== FAILURES ===================================
________________________________ test_subtract ________________________________

def test_subtract():
> assert google.subtract(42, 17)==25, "subtract() failed for a > b > 0"
E AssertionError: subtract() failed for a > b > 0
E assert 35 == 25
E + where 35 = <function subtract at 0x102d4eb90>(42, 17)
E + where <function subtract at 0x102d4eb90> = google.subtract

test_google.py:11: AssertionError
===================== 1 failed, 11 passed in 0.02 seconds =====================

Each dot represents a passed test and each F represents a failed test. They show up in order,
so in the example above, only the second of four tests in test_google.py failed.

Achtung!

PyTest will not find or run tests if they are not contained in files named test_*.py or
*_test.py, where * represents any number of characters. In addition, the unit tests them-
selves must be named test_*() or *_test(). If you need to change this behavior, consult the
documentation at http://pytest.org/latest/example/pythoncollection.html.

Problem 1. The following function contains a subtle but important error.

def smallest_factor(n):
"""Return the smallest prime factor of the positive integer n."""
if n == 1: return 1
for i in range(2, int(n**.5)):

if n % i == 0: return i
return n

Write a unit test for this function, including test cases that you suspect might uncover the error
(what are the edge cases for this function?). Use pytest to run your unit test and discover a
test case that fails, then use this information to correct the function.

http://pytest.org/latest/example/pythoncollection.html

102 Lab 7. Unit Testing

Coverage

Successful unit tests include enough test cases to test the entire program. Coverage refers the number
of lines of code that are executed by at least one test case. One tool for measuring coverage is called
pytest-cov, an extension of pytest. This tool must be installed separately, as it does not come
bundled with Anaconda.

$ conda install pytest-cov

Add the flag --cov to the py.test command to print out code coverage information. Running
py.test --cov in the same directory as specs.py and test_specs.py yields the following output.

$ py.test --cov
============================= test session starts =============================
platform darwin -- Python 3.6.0, pytest-3.0.5, py-1.4.32, pluggy-0.4.0
rootdir: /Users/Student/Testing, inifile:
plugins: cov-2.3.1
collected 7 items

test_specs.py

---------- coverage: platform darwin, python 3.6.6-final-0 ----------
Name Stmts Miss Cover

specs.py 73 34 53%
test_specs.py 46 0 100%

TOTAL 119 34 71%

========================== 7 passed in 0.03 seconds ===========================

Here, Stmts refers to the number of lines of code covered by a unit test, while Miss is the number
of lines that are not currently covered. Notice that the file test_specs.py has 100% coverage while
specs.py does not. Test files generally have 100% coverage, since pytest is designed to run these
files in their entirety. However, specs.py does not have full coverage and requires additional unit
tests. To find out which lines are not yet covered, pytest-cov has a useful feature called cov-report
that creates an HTML file for visualizing the current line coverage.

$ py.test --cov-report html --cov
============================= test session starts =============================
...
---------- coverage: platform darwin, python 3.6.6-final-0 ----------
Coverage HTML written to dir htmlcov

Instead of printing coverage statistics, this command creates various files with coverage details
in a new directory called htmlcov/. The file htmlcov/specs_py.html, which can be viewed in an
internet browser, highlights in red the lines of specs.py that are not yet covered by any unit tests.

103

Note

Statement coverage is categorized as white box testing because it requires an understanding of
the code’s structure. While most black box tests can be written before a program is actually
implemented, white box tests should be added to the collection of unit tests after the program
is completed. By designing unit tests so that they cover every statement in a program, you
may discover that some lines of code are unreachable, find that a conditional statement isn’t
functioning as intended, or uncover problems that accompany edge cases.

Problem 2. With pytest-cov installed, check your coverage of smallest_factor() from
Problem 1. Write additional test cases if necessary to get complete coverage. Then, write a
comprehensive unit test for the following (correctly written) function.

def month_length(month, leap_year=False):
"""Return the number of days in the given month."""
if month in {"September", "April", "June", "November"}:

return 30
elif month in {"January", "March", "May", "July",

"August", "October", "December"}:
return 31

if month == "February":
if not leap_year:

return 28
else:

return 29
else:

return None

Testing Exceptions

Many programs are designed to raise exceptions in response to bad input or an unexpected error. A
good unit test makes sure that the program raises the exceptions that it is expected to raise, but also
that it doesn’t raise any unexpected exceptions. The raises() method in pytest is a clean, formal
way of asserting that a program raises a desired exception.

specs.py

def divide(a, b):
"""Divide two numbers, raising an error if the second number is zero."""
if b == 0:

raise ZeroDivisionError("second input cannot be zero")
return a / b

The corresponding unit tests checks that the function raises the ZeroDivisionError correctly.

104 Lab 7. Unit Testing

test_specs.py
import pytest

def test_divide():
assert specs.divide(4,2) == 2, "integer division"
assert specs.divide(5,4) == 1.25, "float division"
pytest.raises(ZeroDivisionError, specs.divide, a=4, b=0)

If calling divide(a=4, b=0) results in a ZeroDivisionError, pytest.raises() catches the
exception and the test case passes. On the other hand, if divide(a=4, b=0) does not raise a
ZeroDivisionError, or if it raises a different kind of exception, the test fails.

To ensure that the ZeroDivisionError is coming from the written raise statement, combine
pytest.raises() and the with statement to check the exception’s error message.

def test_divide():
assert specs.divide(4,2) == 2, "integer division"
assert specs.divide(5,4) == 1.25, "float division"
with pytest.raises(ZeroDivisionError) as excinfo:

specs.divide(4, 0)
assert excinfo.value.args[0] == "second input cannot be zero"

Here excinfo is an object containing information about the exception; the actual exception
object is stored in excinfo.value, and hence excinfo.value.args[0] is the error message.

Problem 3. Write a comprehensive unit test for the following function. Make sure that each
exception is raised properly by explicitly checking the exception message. Use pytest-cov and
its cov-report tool to confirm that you have full coverage for this function.

def operate(a, b, oper):
"""Apply an arithmetic operation to a and b."""
if type(oper) is not str:

raise TypeError("oper must be a string")
elif oper == '+':

return a + b
elif oper == '-':

return a - b
elif oper == '*':

return a * b
elif oper == '/':

if b == 0:
raise ZeroDivisionError("division by zero is undefined")

return a / b
raise ValueError("oper must be one of '+', '/', '-', or '*'")

105

Fixtures

Consider the following class for representing rational numbers as reduced fractions.

class Fraction(object):
"""Reduced fraction class with integer numerator and denominator."""
def __init__(self, numerator, denominator):

if denominator == 0:
raise ZeroDivisionError("denominator cannot be zero")

elif type(numerator) is not int or type(denominator) is not int:
raise TypeError("numerator and denominator must be integers")

def gcd(a,b):
while b != 0:

a, b = b, a % b
return a

common_factor = gcd(numerator, denominator)
self.numer = numerator // common_factor
self.denom = denominator // common_factor

def __str__(self):
if self.denom != 1:

return "{} / {}".format(self.numer, self.denom)
else:

return str(self.numer)

def __float__(self):
return self.numer / self.denom

def __eq__(self, other):
if type(other) is Fraction:

return self.numer==other.numer and self.denom==other.denom
else:

return float(self) == other

def __add__(self, other):
return Fraction(self.numer*other.numer + self.denom*other.denom,

self.denom*other.denom)
def __sub__(self, other):

return Fraction(self.numer*other.numer - self.denom*other.denom,
self.denom*other.denom)

def __mul__(self, other):
return Fraction(self.numer*other.numer, self.denom*other.denom)

def __truediv__(self, other):
if self.denom*other.numer == 0:

raise ZeroDivisionError("cannot divide by zero")
return Fraction(self.numer*other.denom, self.denom*other.numer)

106 Lab 7. Unit Testing

>>> from specs import Fraction
>>> print(Fraction(8, 12)) # 8/12 reduces to 2/3.
2/3
>>> Fraction(1, 5) == Fraction(3, 15) # 3/15 reduces to 1/5.
True
>>> print(Fraction(1, 3) * Fraction(1, 4))
1/12

To test this class, it would be nice to have some ready-made Fraction objects to use in each
unit test. A fixture, a function marked with the @pytest.fixture decorator, sets up variables that
can be used as mock data for multiple unit tests. The individual unit tests take the fixture function
in as input and unpack the constructed tests. Below, we define a fixture that instantiates three
Fraction objects. The unit tests for the Fraction class use these objects as test cases.

@pytest.fixture
def set_up_fractions():

frac_1_3 = specs.Fraction(1, 3)
frac_1_2 = specs.Fraction(1, 2)
frac_n2_3 = specs.Fraction(-2, 3)
return frac_1_3, frac_1_2, frac_n2_3

def test_fraction_init(set_up_fractions):
frac_1_3, frac_1_2, frac_n2_3 = set_up_fractions
assert frac_1_3.numer == 1
assert frac_1_2.denom == 2
assert frac_n2_3.numer == -2
frac = specs.Fraction(30, 42) # 30/42 reduces to 5/7.
assert frac.numer == 5
assert frac.denom == 7

def test_fraction_str(set_up_fractions):
frac_1_3, frac_1_2, frac_n2_3 = set_up_fractions
assert str(frac_1_3) == "1/3"
assert str(frac_1_2) == "1/2"
assert str(frac_n2_3) == "-2/3"

def test_fraction_float(set_up_fractions):
frac_1_3, frac_1_2, frac_n2_3 = set_up_fractions
assert float(frac_1_3) == 1 / 3.
assert float(frac_1_2) == .5
assert float(frac_n2_3) == -2 / 3.

def test_fraction_eq(set_up_fractions):
frac_1_3, frac_1_2, frac_n2_3 = set_up_fractions
assert frac_1_2 == specs.Fraction(1, 2)
assert frac_1_3 == specs.Fraction(2, 6)
assert frac_n2_3 == specs.Fraction(8, -12)

107

Problem 4. Add test cases to the unit tests provided above to get full coverage for the
__init__(), __str__(), __float__(), and __eq__() methods. You may modify the fix-
ture function if it helps. Also add unit tests for the magic methods __add__(), __sub__(),
__mul__(), and __truediv__(). Verify that you have full coverage with pytest-cov.

Additionally, two of the Fraction class’s methods are implemented incorrectly. Use your
tests to find the issues, then correct the methods so that your tests pass.

See http://doc.pytest.org/en/latest/index.html for complete documentation on pytest.

Test-driven Development
Test-driven development (TDD) is the programming style of writing tests before implementing the
actual code. It may sound tedious at first, but TDD incentivizes simple design and implementation,
speeds up the actual coding, and gives quantifiable checkpoints for the development process. TDD
can be summarized in the following steps:

1. Define with great detail the program specifications. Write function declarations, class defi-
nitions, and (especially) docstrings, determining exactly what each function or class method
should accept and return.

2. Write a unit test for each unit of the program (usually black box tests).

3. Implement the program code, making changes until all tests pass.

For adding new features or cleaning existing code, the process is similar.

1. Redefine program specifications to account for planned modifications.

2. Add or modify tests to match the new specifications.

3. Change the code until all tests pass.

Specifications Tests Implementation

If the test cases are sufficiently thorough, when the tests all pass the program can be considered
complete. Remember, however, that it is not sufficient to just have tests, but to have tests that
accurately and rigorously test the code. To check that the test cases are sufficient, examine the test
coverage and add additional tests if necessary.

See https://en.wikipedia.org/wiki/Test-driven_development for more discussion on TDD
and https://en.wikipedia.org/wiki/Behavior-driven_development for an overview of Behavior-
driven development (BDD), a close relative of TDD.

Problem 5. Set is a card game about finding patterns. Each card contains a design with 4
different properties: color (red, green or purple), shape (diamond, oval or squiggly), quantity
(one, two, or three) and pattern (solid, striped or outlined). A set is a group of three cards
which are either all the same or all different for each property. You can try playing Set online
at http://smart-games.org/en/set/start.

http://doc.pytest.org/en/latest/index.html
https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Behavior-driven_development
http://smart-games.org/en/set/start

108 Lab 7. Unit Testing

Here is a group of twelve Set cards.

This collection of cards contains six unique sets:

(a) Same in quantity and shape; different in
pattern and color

(b) Same in color and pattern; different in
shape and quantity

(c) Same in pattern; different in shape,
quantity and color

(d) Same in shape; different in quantity,
pattern and color

(e) Different in all aspects (f) Different in all aspects

Each Set card can be uniquely represented by a 4-bit integer in base 3,a where each digit
represents a different property and each property has three possible values. A full hand in Set is
a group of twelve unique cards, so a hand can be represented by a list of twelve 4-digit integers
in base 3. For example, the hand shown above could be represented by the following list.

hand1 = ["1022", "1122", "0100", "2021",
"0010", "2201", "2111", "0020",
"1102", "0210", "2110", "1020"]

The following function definitions provide a framework for partially implementing Set by
calculating the number of sets in a given hand.

109

def count_sets(cards):
"""Return the number of sets in the provided Set hand.

Parameters:
cards (list(str)) a list of twelve cards as 4-bit integers in
base 3 as strings, such as ["1022", "1122", ..., "1020"].

Returns:
(int) The number of sets in the hand.

Raises:
ValueError: if the list does not contain a valid Set hand, meaning

- there are not exactly 12 cards,
- the cards are not all unique,
- one or more cards does not have exactly 4 digits, or
- one or more cards has a character other than 0, 1, or 2.

"""
pass

def is_set(a, b, c):
"""Determine if the cards a, b, and c constitute a set.

Parameters:
a, b, c (str): string representations of 4-bit integers in base 3.

For example, "1022", "1122", and "1020" (which is not a set).
Returns:

True if a, b, and c form a set, meaning the ith digit of a, b,
and c are either the same or all different for i=1,2,3,4.

False if a, b, and c do not form a set.
"""
pass

Write unit tests for these functions, but do not implement them yet. Focus on what the
functions should do rather than on how they will be implemented.
(Hint: if three cards form a set, then the first digits of the cards are either all the same or all
different. Then the sums of these digits can only be 0, 3, or 6. Thus a group of cards forms a
set only if for each set of digits—first digits, second digits, etc.—the sum is a multiple of 3.)

aA 4-bit integer in base 3 contains four digits that are either 0, 1 or 2. For example, 0000 and 1201 are 4-bit
integers in base 3, whereas 000 is not because it has only three digits, and 0123 is not because it contains the
number 3.

Problem 6. After you have written unit tests for the functions in Problem 5, implement the
actual functions. If needed, add additional test cases to get full coverage.
(Hint: The combinations() function from the standard library module itertools may be
useful in implementing count_sets().)

110 Lab 7. Unit Testing

Additional Material

The Python Debugger

Python has a built in debugger called pdb to aid in finding mistakes in code during execution. The
debugger can be run either in a terminal or in a Jupyter Notebook.

A break point, set with pdb.set_trace(), is a spot where the program pauses execution. Once
the program is paused, use the following commands to tell the program what to do next.

Command Description
n next: executes the next line

p <var> print: display the value of the specified variable.
c continue: stop debugging and run the program normally to the end.
q quit: terminate the program.
l list: show several lines of code around the current line.
r return: return to the end of a subroutine.

<Enter> Execute the most recent command again.

For example, suppose we have a long loop where the value of a variable changes unpredictably.

pdb_example.py
import pdb
from random import randint

i = 0
pdb.set_trace() # Set a break point.
while i < 1000000000:

i += randint(1, 10)
print("DONE")

Run the file in the terminal to begin a debugging session.

$ python pdb_example.py
> /Users/Student/pdb_example.py(7)<module>()
-> while i < 1000000000:
(Pdb) l # Show where we are.
2 import pdb
3 from random import randint
4
5 i = 0
6 pdb.set_trace()
7 -> while i < 1000000000:
8 i += randint(1, 10)
9 print("DONE")

[EOF]

We can check the value of the variable i at any step with p i, and we can even change the
value of i mid-program.

111

(Pdb) n # Execute a few lines.
> /Users/Student/pdb_example.py(8)<module>()
-> i += randint(1, 10)
(Pdb) n
> /Users/Student/pdb_example.py(7)<module>()
-> while i < 1000000000:
(Pdb) n
> /Users/Student/pdb_example.py(8)<module>()
-> i += randint(1, 10)
(Pdb) p i # Check the value of i.
8
(Pdb) n # Execute another line.
> /Users/Student/pdb_example.py(7)<module>()
-> while i < 1000000000:
(Pdb) p i # Check i again.
14
(Pdb) i = 999999999 # Change the value of i.
(Pdb) c # Continue the program.
DONE

See https://docs.python.org/3/library/pdb.html for documentation and examples for the
Python debugger.

Other Testing Suites

There are several frameworks other than pytest for writing unit tests. Each shares the same basic
structure, but the setup, syntax, and particular features vary. For more unit testing practice, try
out the standard library’s unittest (https://docs.python.org/3/library/unittest.html) or
doctest (https://docs.python.org/3/library/doctest.html), or the third-party nose module
(https://nose.readthedocs.io/en/latest/). For a much larger list of unit testing tools, see
https://wiki.python.org/moin/PythonTestingToolsTaxonomy.

The Fractions Module

The standard library’s fractionsmodule (https://docs.python.org/3/library/fractions.html)
has a Fraction class that is similar to the Fraction class presented in this lab. Its structure
and syntax is a little different from this lab’s class, but it is a little more robust in that it can
take in floats, decimals, integers, and strings to its constructor. See also the decimals module
(https://docs.python.org/3/library/decimal.html) for tools relating to decimal arithmetic.

https://docs.python.org/3/library/pdb.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/doctest.html
https://nose.readthedocs.io/en/latest/
https://wiki.python.org/moin/PythonTestingToolsTaxonomy
https://docs.python.org/3/library/fractions.html
https://docs.python.org/3/library/decimal.html

112 Lab 7. Unit Testing

8 Profiling

Lab Objective: Efficiency is essential to algorithmic programming. Profiling is the process of
measuring the complexity and efficiency of a program, allowing the programmer to see what parts of
the code need to be optimized. In this lab we present common techniques for speeding up Python code,
including the built-in profiler and the Numba module.

Magic Commands in IPython
IPython has tools for quickly timing and profiling code. These “magic commands” start with one or
two % characters—one for testing a single line of code, and two for testing a block of code.

• %time: Execute some code and print out its execution time.

• %timeit: Execute some code several times and print out the average execution time.

• %prun: Run a statement through the Python code profiler,1 printing the number of function
calls and the time each takes. We will demonstrate this tool a little later.

Time the construction of a list using list comprehension.
In [1]: %time x = [i**2 for i in range(int(1e5))]
CPU times: user 36.3 ms, sys: 3.28 ms, total: 39.6 ms
Wall time: 40.9 ms

Time the same list construction, but with a regular for loop.
In [2]: %%time # Use a double %% to time a block of code.

...: x = []

...: for i in range(int(1e5)):

...: x.append(i**2)

...:
CPU times: user 50 ms, sys: 2.79 ms, total: 52.8 ms
Wall time: 55.2 ms # The list comprehension is faster!

1%prun is a shortcut for cProfile.run(); see https://docs.python.org/3/library/profile.html for details.

113

https://docs.python.org/3/library/profile.html

114 Lab 8. Profiling

Choosing Faster Algorithms

The best way to speed up a program is to use an efficient algorithm. A bad algorithm, even when
implemented well, is never an adequate substitute for a good algorithm.

Problem 1. This problem comes from https://projecteuler.net (problems 18 and 67).
By starting at the top of the triangle below and moving to adjacent numbers on the row

below, the maximum total from top to bottom is 23.

3
7 4
2 4 6
8 5 9 3

That is, 3 + 7 + 4 + 9 = 23.
The following function finds the maximum path sum of the triangle in triangle.txt by

recursively computing the sum of every possible path—the “brute force” approach.

def max_path(filename="triangle.txt"):
"""Find the maximum vertical path in a triangle of values."""
with open(filename, 'r') as infile:

data = [[int(n) for n in line.split()]
for line in infile.readlines()]

def path_sum(r, c, total):
"""Recursively compute the max sum of the path starting in row r
and column c, given the current total.
"""
total += data[r][c]
if r == len(data) - 1: # Base case.

return total
else: # Recursive case.

return max(path_sum(r+1, c, total), # Next row, same column.
path_sum(r+1, c+1, total)) # Next row, next column.

return path_sum(0, 0, 0) # Start the recursion from the top.

The data in triangle.txt contains 15 rows and hence 16384 paths, so it is possible to
solve this problem by trying every route. However, for a triangle with 100 rows, there are 299

paths to check, which would take billions of years to compute even for a program that could
check one trillion routes per second. No amount of improvement to max_path() can make it
run in an acceptable amount of time on such a triangle—we need a different algorithm.

Write a function that accepts a filename containing a triangle of integers. Compute the
largest path sum with the following strategy: starting from the next to last row of the triangle,
replace each entry with the sum of the current entry and the greater of the two “child entries.”
Continue this replacement up through the entire triangle. The top entry in the triangle will be
the maximum path sum. In other words, work from the bottom instead of from the top.

https://projecteuler.net

115

3
7 4
2 4 6
8 5 9 3

−→

3
7 4

10 13 15
8 5 9 3

−→

3
20 19

10 13 15
8 5 9 3

−→

23
20 19

10 13 15
8 5 9 3

Use your function to find the maximum path sum of the 100-row triangle stored in
triangle_large.txt. Make sure that your new function still gets the correct answer for the
smaller triangle.txt. Finally, use %time or %timeit to time both functions on triangle.txt.
Your new function should be about 100 times faster than the original.

The Profiler

The profiling command %prun lists the functions that are called during the execution of a piece of
code, along with the following information.

Heading Description
primitive calls The number of calls that were not caused by recursion.

ncalls The number of calls to the function. If recursion occurs, the output
is <total number of calls>/<number of primitive calls>.

tottime The amount of time spent in the function, not including calls to other functions.
percall The amount of time spent in each call of the function.
cumtime The amount of time spent in the function, including calls to other functions.

Profile the original function from Problem 1.
In[3]: %prun max_path("triangle.txt")

81947 function calls (49181 primitive calls) in 0.036 seconds
Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)
32767/1 0.025 0.000 0.034 0.034 profiling.py:18(path_sum)

16383 0.005 0.000 0.005 0.000 {built-in method builtins.max}
32767 0.003 0.000 0.003 0.000 {built-in method builtins.len}

1 0.002 0.002 0.002 0.002 {method ‘readlines’ of ‘_io._IOBase’ objects}
1 0.000 0.000 0.000 0.000 {built-in method io.open}
1 0.000 0.000 0.036 0.036 profiling.py:12(max_path)
1 0.000 0.000 0.000 0.000 profiling.py:15(<listcomp>)
1 0.000 0.000 0.036 0.036 {built-in method builtins.exec}
2 0.000 0.000 0.000 0.000 codecs.py:318(decode)
1 0.000 0.000 0.036 0.036 <string>:1(<module>)

15 0.000 0.000 0.000 0.000 {method ‘split’ of ‘str’ objects}
1 0.000 0.000 0.000 0.000 _bootlocale.py:23(getpreferredencoding)
2 0.000 0.000 0.000 0.000 {built-in method _codecs.utf_8_decode}
1 0.000 0.000 0.000 0.000 {built-in method _locale.nl_langinfo}
1 0.000 0.000 0.000 0.000 codecs.py:259(__init__)
1 0.000 0.000 0.000 0.000 codecs.py:308(__init__)
1 0.000 0.000 0.000 0.000 {method ‘disable’ of ‘_lsprof.Profiler’ objects}

116 Lab 8. Profiling

Optimizing Python Code
A poor implementation of a good algorithm is better than a good implementation of a bad algorithm,
but clumsy implementation can still cripple a program’s efficiency. The following are a few important
practices for speeding up a Python program. Remember, however, that such improvements are futile
if the algorithm is poorly suited for the problem.

Avoid Repetition

A clean program does no more work than is necessary. The ncalls column of the profiler output is
especially useful for identifying parts of a program that might be repetitive. For example, the profile
of max_path() indicates that len() was called 32,767 times—exactly as many times as path_sum().
This is an easy fix: save len(data) as a variable somewhere outside of path_sum().

In [4]: def max_path_clean(filename="triangle.txt"):
...: with open(filename, 'r') as infile:
...: data = [[int(n) for n in line.split()]
...: for line in infile.readlines()]
...: N = len(data) # Calculate len(data) outside of path_sum().
...: def path_sum(r, c, total):
...: total += data[r][c]
...: if r == N - 1: # Use N instead of len(data).
...: return total
...: else:
...: return max(path_sum(r+1, c, total),
...: path_sum(r+1, c+1, total))
...: return path_sum(0, 0, 0)
...:

In [5]: %prun max_path_clean("triangle.txt")

49181 function calls (16415 primitive calls) in 0.026 seconds
Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)
32767/1 0.020 0.000 0.025 0.025 <ipython-input-5-9e8c48bb1aba>:6(path_sum)

16383 0.005 0.000 0.005 0.000 {built-in method builtins.max}
1 0.002 0.002 0.002 0.002 {method ‘readlines’ of ‘_io._IOBase’ objects}
1 0.000 0.000 0.000 0.000 {built-in method io.open}
1 0.000 0.000 0.026 0.026 <ipython-input-5-9e8c48bb1aba>:1(max_path_clean)
1 0.000 0.000 0.000 0.000 <ipython-input-5-9e8c48bb1aba>:3(<listcomp>)
1 0.000 0.000 0.027 0.027 {built-in method builtins.exec}

15 0.000 0.000 0.000 0.000 {method ‘split’ of ‘str’ objects}
1 0.000 0.000 0.027 0.027 <string>:1(<module>)
2 0.000 0.000 0.000 0.000 codecs.py:318(decode)
1 0.000 0.000 0.000 0.000 _bootlocale.py:23(getpreferredencoding)
2 0.000 0.000 0.000 0.000 {built-in method _codecs.utf_8_decode}
1 0.000 0.000 0.000 0.000 {built-in method _locale.nl_langinfo}
1 0.000 0.000 0.000 0.000 codecs.py:308(__init__)
1 0.000 0.000 0.000 0.000 codecs.py:259(__init__)
1 0.000 0.000 0.000 0.000 {built-in method builtins.len}
1 0.000 0.000 0.000 0.000 {method ‘disable’ of ‘_lsprof.Profiler’ objects}

117

Note that the total number of primitive function calls decreased from 49,181 to 16,415. Using
%timeit also shows that the run time decreased by about 15%. Moving code outside of a loop or an
often-used function usually results in a similar speedup.

Another important way of reducing repetition is carefully controlling loop conditions to avoid
unnecessary iterations. Consider the problem of identifying Pythagorean triples, sets of three distinct
integers a < b < c such that a2 + b2 = c2. The following function identifies all such triples where
each term is less than a parameter N by checking all possible triples.

>>> def pythagorean_triples_slow(N):
... """Compute all pythagorean triples with entries less than N."""
... triples = []
... for a in range(1, N): # Try values of a from 1 to N-1.
... for b in range(1, N): # Try values of b from 1 to N-1.
... for c in range(1, N): # Try values of c from 1 to N-1.
... if a**2 + b**2 == c**2 and a < b < c:
... triples.append((a,b,c))
... return triples
...

Since a < b < c by definition, any computations where b ≤ a or c ≤ b are unnecessary.
Additionally, once a and b are chosen, c can be no greater than

√
a2 + b2. The following function

changes the loop conditions to avoid these cases and takes care to only compute a2+ b2 once for each
unique pairing (a, b).

>>> from math import sqrt
>>> def pythagorean_triples_fast(N):
... """Compute all pythagorean triples with entries less than N."""
... triples = []
... for a in range(1, N): # Try values of a from 1 to N-1.
... for b in range(a+1, N): # Try values of b from a+1 to N-1.
... _sum = a**2 + b**2
... for c in range(b+1, min(int(sqrt(_sum))+1, N)):
... if _sum == c**2:
... triples.append((a,b,c))
... return triples
...

These improvements have a drastic impact on run time, even though the main approach—
checking by brute force—is the same.

In [6]: %time triples = pythagorean_triples_slow(500)
CPU times: user 1min 51s, sys: 389 ms, total: 1min 51s
Wall time: 1min 52s # 112 seconds.

In [7]: %time triples = pythagorean_triples_fast(500)
CPU times: user 1.56 s, sys: 5.38 ms, total: 1.57 s
Wall time: 1.57 s # 98.6% faster!

118 Lab 8. Profiling

Problem 2. The following function computes the first N prime numbers.

def primes(N):
"""Compute the first N primes."""
primes_list = []
current = 2
while len(primes_list) < N:

isprime = True
for i in range(2, current): # Check for nontrivial divisors.

if current % i == 0:
isprime = False

if isprime:
primes_list.append(current)

current += 1
return primes_list

This function takes about 6 minutes to find the first 10,000 primes on a fast computer.
Without significantly modifying the approach, rewrite primes() so that it can compute

10,000 primes in under 0.1 seconds. Use the following facts to reduce unnecessary iterations.

• A number is not prime if it has one or more divisors other than 1 and itself.
(Hint: recall the break statement.)

• If p - n, then ap - n for any integer a. Also, if p | n and 0 < p < n, then p ≤
√
n.

• Except for 2, primes are always odd.

Your new function should be helpful for solving problem 7 on https://projecteuler.net.

Avoid Loops

NumPy routines and built-in functions are often useful for eliminating loops altogether. Consider
the simple problem of summing the rows of a matrix, implemented in three ways.

>>> def row_sum_awful(A):
... """Sum the rows of A by iterating through rows and columns."""
... m,n = A.shape
... row_totals = np.empty(m) # Allocate space for the output.
... for i in range(m): # For each row...
... total = 0
... for j in range(n): # ...iterate through the columns.
... total += A[i,j]
... row_totals[i] = total # Record the total.
... return row_totals
...
>>> def row_sum_bad(A):
... """Sum the rows of A by iterating through rows."""
... return np.array([sum(A[i,:]) for i in range(A.shape[0])])

https://projecteuler.net

119

...
>>> def row_sum_fast(A):
... """Sum the rows of A with NumPy."""
... return np.sum(A, axis=1) # Or A.sum(axis=1).
...

None of the functions are fundamentally different, but their run times differ dramatically.

In [8]: import numpy as np
In [9]: A = np.random.random((10000, 10000))

In [10]: %time rows = row_sum_awful(A)
CPU times: user 22.7 s, sys: 137 ms, total: 22.8 s
Wall time: 23.2 s # SLOW!

In [11]: %time rows = row_sum_bad(A)
CPU times: user 8.85 s, sys: 15.6 ms, total: 8.87 s
Wall time: 8.89 s # Slow!

In [12]: %time rows = row_sum_fast(A)
CPU times: user 61.2 ms, sys: 1.3 ms, total: 62.5 ms
Wall time: 64 ms # Fast!

In this experiment, row_sum_fast() runs several hundred times faster than row_sum_awful().
This is primarily because looping is expensive in Python, but NumPy handles loops in C, which is
much quicker. Other NumPy functions like np.sum() with an axis argument can often be used to
eliminate loops in a similar way.

Problem 3. Let A be an m × n matrix with columns a0, . . . ,an−1, and let x be a vector of
length m. The nearest neighbor problema is to determine which of the columns of A is “closest”
to x with respect to some norm. That is, we compute

argmin
j
‖aj − x‖.

The following function solves this problem naïvely for the usual Euclidean norm.

def nearest_column(A, x):
"""Find the index of the column of A that is closest to x."""
distances = []
for j in range(A.shape[1]):

distances.append(np.linalg.norm(A[:,j] - x))
return np.argmin(distances)

Write a new version of this function without any loops or list comprehensions, using array
broadcasting and the axis keyword in np.linalg.norm() to eliminate the existing loop. Try
to implement the entire function in a single line.
(Hint: See the NumPy Visual Guide in the Appendix for a refresher on array broadcasting.)

120 Lab 8. Profiling

Profile the old and new versions with %prun and compare the output. Finally, use %time
or %timeit to verify that your new version runs faster than the original.

aThe nearest neighbor problem is a common problem in many fields of artificial intelligence. The problem
can be solved more efficiently with a k-d tree, a specialized data structure for storing high-dimensional data.

Use Data Structures Correctly

Every data structure has strengths and weaknesses, and choosing the wrong data structure can be
costly. Here we consider three ways to avoid problems and use sets, dictionaries, and lists correctly.

• Membership testing. The question “is <value> a member of <container>” is common in
numerical algorithms. Sets and dictionaries are implemented in a way that makes this a trivial
problem, but lists are not. In other words, the in operator is near instantaneous with sets and
dictionaries, but not with lists.

In [13]: a_list = list(range(int(1e7)))

In [14]: a_set = set(a_list)

In [15]: %timeit 12.5 in a_list
413 ms +- 48.2 ms per loop (mean+-std.dev. of 7 runs, 1 loop each)

In [16]: %timeit 12.5 in a_set
170 ns +- 3.8 ns per loop (mean+-std.dev. of 7 runs, 10000000 loops each)

Looking up dictionary values is also almost immediate. Use dictionaries for storing calculations
to be reused, such as mappings between letters and numbers or common function outputs.

• Construction with comprehension. Lists, sets, and dictionaries can all be constructed with
comprehension syntax. This is slightly faster than building the collection in a loop, and the
code is highly readable.

Map the integers to their squares.
In [17]: %%time

...: a_dict = {}

...: for i in range(1000000):

...: a_dict[i] = i**2

...:
CPU times: user 432 ms, sys: 54.4 ms, total: 486 ms
Wall time: 491 ms

In [18]: %time a_dict = {i:i**2 for i in range(1000000)}
CPU times: user 377 ms, sys: 58.9 ms, total: 436 ms
Wall time: 440 ms

• Intelligent iteration. Unlike looking up dictionary values, indexing into lists takes time.
Instead of looping over the indices of a list, loop over the entries themselves. When indices and
entries are both needed, use enumerate() to get the index and the item simultaneously.

121

In [19]: a_list = list(range(1000000))

In [20]: %%time # Loop over the indices of the list.
...: for i in range(len(a_list)):
...: item = a_list[i]
...:

CPU times: user 103 ms, sys: 1.78 ms, total: 105 ms
Wall time: 107 ms

In [21]: %%time # Loop over the items in the list.
...: for item in a_list:
...: _ = item
...:

CPU times: user 61.2 ms, sys: 1.31 ms, total: 62.5 ms
Wall time: 62.5 ms # Almost twice as fast as indexing!

Problem 4. This is problem 22 from https://projecteuler.net.
Using the rule A 7→ 1, B 7→ 2, . . . , Z 7→ 26, the alphabetical value of a name is the sum

of the digits that correspond to the letters in the name. For example, the alphabetic value of
“COLIN” is 3 + 15 + 12 + 9 + 14 = 53.

The following function reads the file names.txt, containing over five-thousand first names,
and sorts them in alphabetical order. The name score of each name in the resulting list is
the alphabetic value of the name multiplied by the name’s position in the list, starting at 1.
“COLIN” is the 938th name alphabetically, so its name score is 938×53 = 49714. The function
returns the total of all the name scores in the file.

def name_scores(filename="names.txt"):
"""Find the total of the name scores in the given file."""
with open(filename, 'r') as infile:

names = sorted(infile.read().replace('"', '').split(','))
total = 0
for i in range(len(names)):

name_value = 0
for j in range(len(names[i])):

alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
for k in range(len(alphabet)):

if names[i][j] == alphabet[k]:
letter_value = k + 1

name_value += letter_value
total += (names.index(names[i]) + 1) * name_value

return total

Rewrite this function—removing repetition, eliminating loops, and using data structures
correctly—so that it runs in less than 10 milliseconds on average.

https://projecteuler.net

122 Lab 8. Profiling

Use Generators

A generator is an iterator that yields multiple values, one at a time, as opposed to returning a single
value. For example, range() is a generator. Using generators appropriately can reduce both the run
time and the spatial complexity of a routine. Consider the following function, which constructs a list
containing the entries of the sequence {xn}Nn=1 where xn = xn−1 + n with x1 = 1.

>>> def sequence_function(N):
... """Return the first N entries of the sequence x_n = x_{n-1} + n."""
... sequence = []
... x = 0
... for n in range(1, N+1):
... x += n
... sequence.append(x)
... return sequence
...
>>> sequence_function(10)
[1, 3, 6, 10, 15, 21, 28, 36, 45, 55]

A potential problem with this function is that all of the values in the list are computed before
anything is returned. This can be a big issue if the parameter N is large. A generator, on the other
hand, yields one value at a time, indicated by the keyword yield (instead of return). When the
generator is asked for the next entry, the code resumes right where it left off.

>>> def sequence_generator(N):
... """Yield the first N entries of the sequence x_n = x_{n-1} + n."""
... x = 0
... for n in range(1, N+1):
... x += n
... yield x # "return" a single value.
...
Get the entries of the generator one at a time with next().
>>> generated = sequence_generator(10)
>>> next(generated)
1
>>> next(generated)
3
>>> next(generated)
6

Put each of the generated items in a list, as in sequence_function().
>>> list(sequence_generator(10)) # Or [i for i in sequence_generator(10)].
[1, 3, 6, 10, 15, 21, 28, 36, 45, 55]

Use the generator in a for loop, like range().
>>> for entry in sequence_generator(10):
... print(entry, end=' ')
...
1 3 6 10 15 21 28 36 45 55

123

Many generators, like range() and sequence_generator(), only yield a finite number of values.
However, generators can also continue yielding indefinitely. For example, the following generator
yields the terms of {xn}∞n=1 forever. In this case, using enumerate() with the generator is helpful
for tracking the index n as well as the entry xn.

>>> def sequence_generator_forever():
... """Yield the sequence x_n = x_{n-1} + n forever."""
... x = 0
... n = 1
... while True:
... x += n
... n += 1
... yield x # "return" a single value.
...

Sum the entries of the sequence until the sum exceeds 1000.
>>> total = 0
>>> for i, x in enumerate(sequence_generator_forever()):
... total += x
... if total > 1000:
... print(i) # Print the index where the total exceeds.
... break # Break out of the for loop to stop iterating.
...
17

Check that 18 terms are required (since i starts at 0 but n starts at 1).
>>> print(sum(sequence_generator(17)), sum(sequence_generator(18)))
969 1140

Achtung!

In Python 2.7 and earlier, range() is not a generator. Instead, it constructs an entire list of
values, which is often significantly slower than yielding terms individually as needed. If you are
using old versions of Python, use xrange(), the equivalent of range() in Python 3.0 and later.

Problem 5. This is problem 25 from https://projecteuler.net.
The Fibonacci sequence is defined by the recurrence relation Fn = Fn−1 + Fn−2, where

F1 = F2 = 1. The 12th term, F12 = 144, is the first term to contain three digits.
Write a generator that yields the terms of the Fibonacci sequence indefinitely. Next, write

a function that accepts an integer N . Use your generator to find the first term in the Fibonacci
sequence that contains N digits. Return the index of this term.
(Hint: a generator can have more than one yield statement.)

https://projecteuler.net

124 Lab 8. Profiling

Problem 6. The function in Problem 2 could be turned into a prime number generator that
yields primes indefinitely, but it is not the only strategy for yielding primes. The Sieve of
Eratosthenesa is a faster technique for finding all of the primes below a certain number.

1. Given a cap N , start with all of the integers from 2 to N .

2. Remove all integers that are divisible by the first entry in the list.

3. Yield the first entry in the list and remove it from the list.

4. Return to step 2 until the list is empty.

Write a generator that accepts an integer N and that yields all primes (in order, one at a
time) that are less than N using the Sieve of Eratosthenes. Your generator should be able to
find all primes less than 100,000 in under 5 seconds.

Your generator and your fast function from Problem 2 may be helpful in solving problems
10, 35, 37, 41, 49, and 50 (for starters) of https://projecteuler.net.

aSee https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes.

Numba
Python code is simpler and more readable than many languages, but Python is also generally much
slower than compiled languages like C. The numba module bridges the gap by using just-in-time (JIT)
compilation to optimize code, meaning that the code is actually compiled right before execution.

>>> from numba import jit

>>> @jit # Decorate a function with @jit to use Numba.
... def row_sum_numba(A):
... """Sum the rows of A by iterating through rows and columns,
... optimized by Numba.
... """
... m,n = A.shape
... row_totals = np.empty(m)
... for i in range(m):
... total = 0
... for j in range(n):
... total += A[i,j]
... row_totals[i] = total
... return row_totals

Python is a dynamically typed language, meaning variables are not defined explicitly with a
datatype (x = 6 as opposed to int x = 6). This particular aspect of Python makes it flexible,
easy to use, and slow. Numba speeds up Python code primarily by assigning datatypes to all the
variables. Rather than requiring explicit definitions for datatypes, Numba attempts to infer the
correct datatypes based on the datatypes of the input. In row_sum_numba(), if A is an array of
integers, Numba will infer that total should also be an integer. On the other hand, if A is an array
of floats, Numba will infer that total should be a double (a similar datatype to float in C).

https://projecteuler.net
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

125

Once all datatypes have been inferred and assigned, the original Python code is translated to
machine code. Numba caches this compiled version of code for later use. The first function call takes
the time to compile and then execute the code, but subsequent calls use the already-compiled code.

In [22]: A = np.random.random((10000, 10000))

The first function call takes a little extra time to compile first.
In [23]: %time rows = row_sum_numba(A)
CPU times: user 408 ms, sys: 11.5 ms, total: 420 ms
Wall time: 425 ms

Subsequent calls are consistently faster that the first call.
In [24]: %timeit row_sum_numba(A)
138 ms +- 1.96 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)

Note that the only difference between row_sum_numba() and row_sum_awful() from a few
pages ago is the @jit decorator, and yet the Numba version is about 99% faster than the original!

The inference engine within Numba does a good job, but it’s not always perfect. Adding
the keyword argument nopython=True to the @jit decorator raises an error if Numba is unable to
convert each variable to explicit datatypes. The inspect_types() method can also be used to check
if Numba is using the desired types.

Run the function once first so that it compiles.
>>> rows = row_sum_numba(np.random.random((10,10)))
>>> row_sum_numba.inspect_types()
The output is very long and detailed.

Alternatively, datatypes can be specified explicitly in the @jit decorator as a dictionary via
the locals keyword argument. Each of the desired datatypes must also be imported from Numba.

>>> from numba import int64, double

>>> @jit(nopython=True, locals=dict(A=double[:,:], m=int64, n=int64,
... row_totals=double[:], total=double))
... def row_sum_numba(A): # 'A' is a 2-D array of doubles.
... m,n = A.shape # 'm' and 'n' are both integers.
... row_totals = np.empty(m) # 'row_totals' is a 1-D array of doubles.
... for i in range(m):
... total = 0 # 'total' is a double.
... for j in range(n):
... total += A[i,j]
... row_totals[i] = total
... return row_totals
...

While it sometimes results in a speed boost, there is a caveat to specifying the datatypes:
row_sum_numba() no longer accepts arrays that contain anything other than floats. When datatypes
are not specified, Numba compiles a new version of the function each time the function is called with
a different kind of input. Each compiled version is saved, so the function can still be used flexibly.

126 Lab 8. Profiling

Problem 7. The following function calculates the nth power of an m×m matrix A.

def matrix_power(A, n):
"""Compute A^n, the n-th power of the matrix A."""
product = A.copy()
temporary_array = np.empty_like(A[0])
m = A.shape[0]
for power in range(1, n):

for i in range(m):
for j in range(m):

total = 0
for k in range(m):

total += product[i,k] * A[k,j]
temporary_array[j] = total

product[i] = temporary_array
return product

1. Write a Numba-enhanced version of matrix_power() called matrix_power_numba().

2. Write a function that accepts an integer n. Run matrix_power_numba() once with a
small random input so it compiles. Then, for m = 22, 23, . . . , 27,

(a) Generate a random m×m matrix A with np.random.random().

(b) Time (separately) matrix_power(), matrix_power_numba(), and NumPy’s
np.linalg.matrix_power() on A with the specified value of n.
(If you are unfamiliar with timing code inside of a function, see the
Additional Material section on timing code.)

Plot the times against the size m on a log-log plot (use plt.loglog()).

With n = 10, the plot should show that the Numba and NumPy versions far outperform the
pure Python implementation, with NumPy eventually becoming faster than Numba.

Achtung!

Optimizing code is an important skill, but it is also important to know when to refrain from
optimization. The best approach to coding is to write unit tests, implement a solution that
works, test and time that solution, then (and only then) optimize the solution with profiling
techniques. As always, the most important part of the process is choosing the correct algorithm
to solve the problem. Don’t waste time optimizing a poor algorithm.

127

Additional Material
Other Timing Techniques

Though %time and %timeit are convenient and work well, some problems require more control for
measuring execution time. The usual way of timing a code snippet by hand is via the time module
(which %time uses). The function time.time() returns the number of seconds since the Epoch2; to
time code, measure the number of seconds before the code runs, the number of seconds after the
code runs, and take the difference.

>>> import time

>>> start = time.time() # Record the current time.
>>> for i in range(int(1e8)): # Execute some code.
... pass
... end = time.time() # Record the time again.
... print(end - start) # Take the difference.
...
4.20402193069458 # (seconds)

The timeit module (which %timeit uses) has tools for running code snippets several times.
The code is passed in as a string, as well as any setup code to be run before starting the clock.

>>> import timeit

>>> timeit.timeit("for i in range(N): pass", setup="N = int(1e6)", number=200)
4.884839255013503 # Total time in seconds to run the code 200 times.
>>> _ / 200
0.024424196275067516 # Average time in seconds.

The primary advantages of these techniques are the ability automate timing code and being able
save the results. For more documentation, see https://docs.python.org/3.6/library/time.html
and https://docs.python.org/3.6/library/timeit.html.

Customizing the Profiler

The output from %prun is generally long, but it can be customized with the following options.

Option Description
-l <limit> Include a limited number of lines in the output.
-s <key> Sort the output by call count, cumulative time, function name, etc.
-T <filename> Save profile results to a file (results are still printed).

For example, %prun -l 3 -s ncalls -T path_profile.txt max_path() generates a profile
of max_path() that lists the 3 functions with the most calls, then write the results to path_profile.txt.
See http://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-prun for more
details.

2See https://en.wikipedia.org/wiki/Epoch_(reference_date)#Computing.

https://docs.python.org/3.6/library/time.html
https://docs.python.org/3.6/library/timeit.html
http://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-prun
https://en.wikipedia.org/wiki/Epoch_(reference_date)#Computing

128 Lab 8. Profiling

9 Introduction to SymPy

Lab Objective: Most implementations of numerical algorithms focus on crunching, relating, or
visualizing numerical data. However, it is sometimes convenient or necessary to represent parts of an
algorithm symbolically. The SymPy module provides a way to do symbolic mathematics in Python,
including algebra, differentiation, integration, and more. In this lab, we introduce SymPy syntax and
emphasize how to use symbolic algebra for numerical computing.

Symbolic Variables and Expressions
Most variables in Python refer to a number, string, or data structure. Doing computations on such
variables results in more numbers, strings, or data structures. A symbolic variable is a variable that
represents a mathematical symbol, such as x or θ, not a number or another kind of data. Operating
on symbolic variables results in an expression, representative of an actual mathematical expression.
For example, if a symbolic variable Y refers to a mathematical variable y, the multiplication 3*Y
refers to the expression 3y. This is all done without assigning an actual numerical value to Y.

SymPy is Python’s library for doing symbolic algebra and calculus. It is typically imported
with import sympy as sy, and symbolic variables are usually defined using sy.symbols().

>>> import sympy as sy
>>> x0 = sy.symbols('x0') # Define a single variable.

Define multiple symbolic variables simultaneously.
>>> x2, x3 = sy.symbols('x2, x3') # Separate symbols by commas,
>>> m, a = sy.symbols('mass acceleration') # by spaces,
>>> x, y, z = sy.symbols('x:z') # or by colons.
>>> x4, x5, x6 = sy.symbols('x4:7')

Combine symbolic variables to form expressions.
>>> expr = x**2 + x*y + 3*x*y + 4*y**3
>>> force = m * a
>>> print(expr, force, sep='\n')
x**2 + 4*x*y + 4*y**3
acceleration*mass

129

130 Lab 9. Introduction to SymPy

SymPy has its own version for each of the standard mathematical functions like sin(x), log(x),
and
√
x, and includes predefined variables for special numbers such as π. The naming conventions

for most functions match NumPy, but some of the built-in constants are named slightly differently.

Functions
sin(x) arcsin(x) sinh(x) ex log(x)

√
x

sy.sin() sy.asin() sy.sinh() sy.exp() sy.log() sy.sqrt()

Constants
π e i =

√
−1 ∞

sy.pi sy.E sy.I sy.oo

Other trigonometric functions like cos(x) follow the same naming conventions. For more a complete
list of SymPy functions, see http://docs.sympy.org/latest/modules/functions/index.html.

Achtung!

Always use SymPy functions and constants when creating expressions instead of using NumPy’s
functions and constants. Later we will show how to make NumPy and SymPy cooperate.

>>> import numpy as np

>>> x = sy.symbols('x')
>>> np.exp(x) # Try to use NumPy to represent e**x.
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: 'Symbol' object has no attribute 'exp'

>>> sy.exp(x) # Use SymPy's version instead.
exp(x)

Note

SymPy defines its own numeric types for integers, floats, and rational numbers. For example,
the sy.Rational class is similar to the standard library’s fractions.Fraction class, and
should be used to represent fractions in SymPy expressions.

>>> x = sy.symbols('x')
>>> (2/3) * sy.sin(x) # 2/3 returns a float, not a rational.
0.666666666666667*sin(x)

>>> sy.Rational(2, 3) * sy.sin(x) # Keep 2/3 symbolic.
2*sin(x)/3

Always be aware of which numeric types are being used in an expression. Using rationals and
integers where possible is important in simplifying expressions.

http://docs.sympy.org/latest/modules/functions/index.html

131

Problem 1. Write a function that returns the expression 2
5e
x2−y cosh(x + y) + 3

7 log(xy + 1)

symbolically. Make sure that the fractions remain symbolic.

Sums and Products

Expressions that can be written as a sum or a product can be constructed with sy.summation() or
sy.product(), respectively. Each of these functions accepts an expression that represents one term
of the sum or product, then a tuple indicating the indexing variable and which values it should take
on. For example, the following code constructs the sum and product given below.

4∑
i=1

x+ iy

5∏
i=0

x+ iy

>>> x, y, i = sy.symbols('x y i')

>>> sy.summation(x + i*y, (i, 1, 4)) # Sum over i=1,2,3,4.
4*x + 10*y

>>> sy.product(x + i*y, (i, 0, 5)) # Multiply over i=0,1,2,3,4,5.
x*(x + y)*(x + 2*y)*(x + 3*y)*(x + 4*y)*(x + 5*y)

Simplifying Expressions

The expressions for the summation and product in the previous example are automatically simplified.
More complicated expressions can be simplified with one or more of the following functions.

Function Description
sy.cancel() Cancel common factors in the numerator and denominator.
sy.expand() Expand a factored expression.
sy.factor() Factor an expanded expression.
sy.radsimp() Rationalize the denominator of an expression.
sy.simplify() Simplify an expression.
sy.trigsimp() Simplify only the trigonometric parts of the expression.

>>> x = sy.symbols('x')
>>> expr = (x**2 + 2*x + 1) / ((x+1)*((sy.sin(x)/sy.cos(x))**2 + 1))
>>> print(expr)
(x**2 + 2*x + 1)/((x + 1)*(sin(x)**2/cos(x)**2 + 1))

>>> sy.simplify(expr)
(x + 1)*cos(x)**2

The generic sy.simplify() tries to simplify an expression in any possible way. This is often
computationally expensive; using more specific simplifiers when possible reduces the cost.

132 Lab 9. Introduction to SymPy

>>> expr = sy.product(x + i*y, (i, 0, 3))
>>> print(expr)
x*(x + y)*(x + 2*y)*(x + 3*y)

>>> expr_long = sy.expand(expr) # Expand the product terms.
>>> print(expr_long)
x**4 + 6*x**3*y + 11*x**2*y**2 + 6*x*y**3

>>> expr_long /= (x + 3*y)
>>> print(expr_long)
(x**4 + 6*x**3*y + 11*x**2*y**2 + 6*x*y**3)/(x + 3*y)

>>> expr_short = sy.cancel(expr_long) # Cancel out the denominator.
x**3 + 3*x**2*y + 2*x*y**2

>>> sy.factor(expr_short) # Factor the result.
x*(x + y)*(x + 2*y)

Simplify the trigonometric parts of an expression.
>>> sy.trigsimp(2*sy.sin(x)*sy.cos(x))
sin(2*x)

See http://docs.sympy.org/latest/tutorial/simplification.html for more examples.

Achtung!

1. Simplifications return new expressions; they do not modify existing expressions in place.

2. The == operator compares two expressions for exact structural equality, not algebraic
equivalence. Simplify or expand expressions before comparing them with ==.

3. Expressions containing floats may not simplify as expected. Always use integers and
SymPy rationals in expressions when appropriate.

>>> expr = 2*sy.sin(x)*sy.cos(x)
>>> sy.trigsimp(expr)
sin(2*x)
>> print(expr)
2*sin(x)*cos(x) # The original expression is unchanged.

>>> 2*sy.sin(x)*sy.cos(x) == sy.sin(2*x)
False # The two expression structures differ.

>>> sy.factor(x**2.0 - 1)
x**2.0 - 1 # Factorization fails due to the 2.0.

http://docs.sympy.org/latest/tutorial/simplification.html

133

Problem 2. Write a function that computes and simplifies the following expression.

5∏
i=1

5∑
j=i

j(sin(x) + cos(x))

Evaluating Expressions
Every SymPy expression has a subs() method that substitutes one variable for another. The result is
usually still a symbolic expression, even if a numerical value is used in the substitution. The evalf()
method actually evaluates the expression numerically after all symbolic variables have been assigned
a value. Both of these methods can accept a dictionary to reassign multiple symbols simultaneously.

>>> x,y = sy.symbols('x y')
>>> expr = sy.expand((x + y)**3)
>>> print(expr)
x**3 + 3*x**2*y + 3*x*y**2 + y**3

Replace the symbolic variable y with the expression 2x.
>>> expr.subs(y, 2*x)
27*x**3

Replace x with pi and y with 1.
>>> new_expr = expr.subs({x:sy.pi, y:1})
>>> print(new_expr)
1 + 3*pi + 3*pi**2 + pi**3
>>> new_expr.evalf() # Numerically evaluate the expression.
71.0398678443373

Evaluate the expression by providing values for each variable.
>>> expr.evalf(subs={x:1, y:2})
27.0000000000000

These operations are good for evaluating an expression at a single point, but it is typically more
useful to turn the expression into a reusable numerical function. To this end, sy.lambdify() takes
in a symbolic variable (or list of variables) and an expression, then returns a callable function that
corresponds to the expression.

Turn the expression sin(x)^2 into a function with x as the variable.
>>> f = sy.lambdify(x, sy.sin(x)**2)
>>> print(f(0), f(np.pi/2), f(np.pi), sep=' ')
0.0 1.0 1.4997597826618576e-32

Lambdify a function of several variables.
>>> f = sy.lambdify((x,y), sy.sin(x)**2 + sy.cos(y)**2)
>>> print(f(0,1), f(1,0), f(np.pi, np.pi), sep=' ')
0.2919265817264289 1.708073418273571 1.0

134 Lab 9. Introduction to SymPy

By default, sy.lambdify() uses the math module to convert an expression to a function. For
example, sy.sin() is converted to math.sin(). By providing "numpy" as an additional argument,
sy.lambdify() replaces symbolic functions with their NumPy equivalents instead, so sy.sin() is
converted to np.sin(). This allows the resulting function to act element-wise on NumPy arrays, not
just on single data points.

>>> f = sy.lambdify(x, 2*sy.sin(2*x), "numpy")
>>> f(np.linspace(0, 2*np.pi, 9)) # Evaluate f() at many points.
array([0.00000000e+00, 2.00000000e+00, 2.44929360e-16,

-2.00000000e+00, -4.89858720e-16, 2.00000000e+00,
7.34788079e-16, -2.00000000e+00, -9.79717439e-16])

Note

It is almost always computationally cheaper to lambdify a function than to use substitutions.
According to the SymPy documentation, using sy.lambdify() to do numerical evaluations
“takes on the order of hundreds of nanoseconds, roughly two orders of magnitude faster than
the subs() method.”

In [1]: import sympy as sy
In [2]: import numpy as np

Define a symbol, an expression, and points to plug into the expression.
In [3]: x = sy.symbols('x')
In [4]: expr = sy.tanh(x)
In [5]: points = np.random.random(10000)

Time using evalf() on each of the random points.
In [6]: %time _ = [expr.subs(x, pt).evalf() for pt in points]
CPU times: user 5.29 s, sys: 40.3 ms, total: 5.33 s
Wall time: 5.36 s

Lambdify the expression and time using the resulting function.
In [7]: f = sy.lambdify(x, expr)
In [8]: %time _ = [f(pt) for pt in points]
CPU times: user 5.39 ms, sys: 648 micros, total: 6.04 ms
Wall time: 7.75 ms # About 1000 times faster than evalf().

Lambdify the expression with NumPy and repeat the experiment.
In [9]: f = sy.lambdify(x, expr, "numpy")
In [10]: %time _ = f(points)
CPU times: user 381 micros, sys: 63 micros, total: 444 micros
Wall time: 282 micros # About 10 times faster than regular lambdify.

135

Problem 3. The Maclaurin series up to order N for ex is defined as

ex ≈
N∑
n=0

xn

n!
. (9.1)

Write a function that accepts an integer N . Define an expression for (9.1), then substitute in
−y2 for x to get a truncated Maclaurin series of e−y

2

. Lambdify the resulting expression and
plot the series on the domain y ∈ [−2, 2]. Plot e−y2 over the same domain for comparison.
(Hint: use sy.factorial() to compute the factorial.)

Call your function with increasing values of N to check that the series converges correctly.

Solving Symbolic Equations
A SymPy expression by itself is not an equation. However, sy.solve() equates an expression with
zero and solves for a specified variable. In this way, SymPy can be used to solve equations.

>>> x,y = sy.symbols('x y')

Solve x^2 - 2x + 1 = 0 for x.
>>> sy.solve(x**2 - 2*x + 1, x)
[1] # The result is a list of solutions.

Solve x^2 - 1 = 0 for x.
>>> sy.solve(x**2 - 1, x)
[-1, 1] # This equation has two solutions.

Solutions can also be expressions involving other variables.
>>> sy.solve(x/(y-x) + (x-y)/y, x)
[y*(-sqrt(5) + 3)/2, y*(sqrt(5) + 3)/2]

Problem 4. The following equation represents a rose curve in cartesian coordinates.

0 = 1− (x2 + y2)7/2 + 18x5y − 60x3y3 + 18xy5

(x2 + y2)3
(9.2)

The curve is not the image of a single function (such a function would fail the vertical line test),
so the best way to plot it is to convert (9.2) to a pair of parametric equations that depend on
the angle parameter θ.

Construct an expression for the nonzero side of (9.2) and convert it to polar coordinates
with the substitutions x = r cos(θ) and y = r sin(θ). Simplify the result, then solve it for r.
There are two solutions due to the presence of an r2 term; pick one and lambdify it to get
a function r(θ). Use this function to plot x(θ) = r(θ) cos(θ) against y(θ) = r(θ) sin(θ) for
θ ∈ [0, 2π].
(Hint: use sy.Rational() for the fractional exponent.)

136 Lab 9. Introduction to SymPy

Linear Algebra

Sympy can also solve systems of equations. A system of linear equations Ax = b is solved in a
slightly different way than in NumPy and SciPy: instead of defining the matrix A and the vector b
separately, define the augmented matrix M = [A | b] and call sy.solve_linear_system() on M .

SymPy matrices are defined with sy.Matrix(), with the same syntax as 2-dimensional NumPy
arrays. For example, the following code solves the system given below.

x + y + z = 5

2x + 4y + 3z = 2

5x + 10y + 2z = 4

>>> x, y, z = sy.symbols('x y z')

Define the augmented matrix M = [A|b].
>>> M = sy.Matrix([[1, 1, 1, 5],

[2, 4, 3, 2],
[5, 10, 2, 4]])

Solve the system, providing symbolic variables to solve for.
>>> sy.solve_linear_system(M, x, y, z)
{x: 98/11, y: -45/11, z: 2/11}

SymPy matrices support the standard matrix operations of addition +, subtraction -, and
multiplication @. Additionally, SymPy matrices are equipped with many useful methods, some of
which are listed below. See http://docs.sympy.org/latest/modules/matrices/matrices.html
for more methods and examples.

Method Returns
det() The determinant.

eigenvals() The eigenvalues and their multiplicities.
eigenvects() The eigenvectors and their corresponding eigenvalues.

inv() The matrix inverse.
is_nilpotent() True if the matrix is nilpotent.

norm() The Frobenius, ∞, 1, or 2 norm.
nullspace() The nullspace as a list of vectors.

rref() The reduced row-echelon form.
singular_values() The singular values.

Achtung!

The * operator performs matrix multiplication on SymPy matrices. To perform element-wise
multiplication, use the multiply_elementwise() method instead.

http://docs.sympy.org/latest/modules/matrices/matrices.html

137

Problem 5. Find the eigenvalues of the following matrix by solving for λ in the characteristic
equation det(A− λI) = 0.

A =

 x− y x 0

x x− y x

0 x x− y

Also compute the eigenvectors by solving the linear system A − λI = 0 for each eigenvalue λ.
Return a dictionary mapping the eigenvalues to their eigenvectors.
(Hint: the nullspace() method may be useful.)

Check that Av = λv for each eigenvalue-eigenvector pair (λ,v). Compare your results to
the eigenvals() and eigenvects() methods for SymPy matrices.

Calculus
SymPy is also equipped to perform standard calculus operations, including derivatives, integrals, and
taking limits. Like other elements of SymPy, calculus operations can be temporally expensive, but
they give exact solutions whenever solutions exist.

Differentiation

The command sy.Derivative() creates a closed form, unevaluated derivative of an expression. This
is like putting d

dx in front of an expression without actually calculating the derivative symbolically.
The resulting expression has a doit() method that can be used to evaluate the actual derivative.
Equivalently, sy.diff() immediately takes the derivative of an expression.

Both sy.Derivative() and sy.diff() accept a single expression, then the variable or variables
that the derivative is being taken with respect to.

>>> x, y = sy.symbols('x y')
>>> f = sy.sin(y)*sy.cos(x)**2

Make an expression for the derivative of f with respect to x.
>>> df = sy.Derivative(f, x)
>>> print(df)
Derivative(sin(y)*cos(x)**2, x)

>>> df.doit() # Perform the actual differentiation.
-2*sin(x)*sin(y)*cos(x)

Alternatively, calculate the derivative of f in a single step.
>>> sy.diff(f, x)
-2*sin(x)*sin(y)*cos(x)

Calculate the derivative with respect to x, then y, then x again.
>>> sy.diff(f, x, y, x)
2*(sin(x)**2 - cos(x)**2)*cos(y) # Note this expression could be simplified.

138 Lab 9. Introduction to SymPy

Problem 6. Let f : R → R be a smooth function. A critical point of f is a number x0 ∈ R
satisfying f ′(x0) = 0. The second derivative test states that a critical point x0 is a local
minimum of f if f ′′(x0) > 0, or a local maximum of f if f ′′(x0) < 0 (if f ′′(x0) = 0, the test is
inconclusive.

Now consider the polynomial

p(x) = 2x6 − 51x4 + 48x3 + 312x2 − 576x− 100.

Use SymPy to find all critical points of p and classify each as a local minimum or a local
maximum. Plot p(x) over x ∈ [−5, 5] and mark each of the minima in one color and the
maxima in another color. Return the collections of local minima and local maxima as sets.

The Jacobian matrix of a multivariable function f : Rn → Rm at a point x0 ∈ Rn is the m× n
matrix J whose entries are given by

Jij =
∂fi
∂xj

(x0).

For example, the Jacobian for a function f : R3 → R2 is defined by

J =
[

∂f
∂x1

∂f
∂x2

∂f
∂x3

]
=

 ∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

 , where f(x) =

[
f1(x)

f2(x)

]
, x =

 x1
x2
x3

 .
To calculate the Jacobian matrix of a multivariate function with SymPy, define that function

as a symbolic matrix (sy.Matrix()) and use its jacobian() method. The method requires a list of
variables that prescribes the ordering of the differentiation.

Create a matrix of symbolic variables.
>>> r, t = sy.symbols('r theta')
>>> f = sy.Matrix([r*sy.cos(t), r*sy.sin(t)])

Find the Jacobian matrix of f with respect to r and theta.
>>> J = f.jacobian([r,t])
>>> J
Matrix([
[cos(theta), -r*sin(theta)],
[sin(theta), r*cos(theta)]])

Evaluate the Jacobian matrix at the point (1, pi/2).
>>> J.subs({r:1, t:sy.pi/2})
Matrix([
[0, -1],
[1, 0]])

Calculate the (symbolic) determinant of the Jacobian matrix.
>>> sy.simplify(J.det())
r

139

Integration

The function sy.Integral() creates an unevaluated integral expression. This is like putting an
integral sign in front of an expression without actually evaluating the integral symbolically or nu-
merically. The resulting expression has a doit() method that can be used to evaluate the actual
integral. Equivalently, sy.integrate() immediately integrates an expression.

Both sy.Derivative() and sy.diff() accept a single expression, then a tuple or tuples con-
taining the variable of integration and, optionally, the bounds of integration.

Calculate the indefinite integral of sec(x).
>>> sy.integrate(sy.sec(x), x)
-log(sin(x) - 1)/2 + log(sin(x) + 1)/2

Integrate cos(x)^2 from 0 to pi/2.
>>> sy.integrate(sy.cos(x)**2, (x,0,sy.pi/2))
pi/4

Compute the integral of (y^2)(x^2) dx dy with x from 0 to 2, y from -1 to 1.
>>> sy.integrate(y**2 * x**2, (x,0,2), (y,-1,1))
16/9

Problem 7. Let f : R3 → R be a smooth function. The volume integral of f over the sphere
S of radius r can written in spherical coordinates as∫∫∫

S

f(x, y, z)dV =

∫ π

0

∫ 2π

0

∫ r

0

f(h1(ρ, θ, φ), h2(ρ, θ, φ), h3(ρ, θ, φ))|det(J)| dρ dθ dφ,

where J is the Jacobian of the function h : R3 → R3 given by

h(ρ, θ, φ) =

 h1(ρ, θ, φ)

h2(ρ, θ, φ)

h3(ρ, θ, φ)

 =

 ρ sin(φ) cos(θ)

ρ sin(φ) sin(θ)

ρ cos(φ)

 .
Calculate the volume integral of f(x, y, z) = (x2 + y2 + z2)2 over the sphere of radius r.
Lambdify the resulting expression (with r as the independent variable) and plot the integral
value for r ∈ [0, 3]. In addition, return the value of the integral when r = 2.
(Hint: simplify the integrand before computing the integral. In this case, |det(J)| = − det(J).)

To check your answer, when r = 3, the value of the integral is 8748
7 π.

Achtung!

SymPy isn’t perfect. It solves some integrals incorrectly, simplifies some expressions poorly,
and is significantly slower than numerical computations. However, it is generally very useful for
simplifying parts of an algorithm, getting exact answers, and handling tedious algebra quickly.

140 Lab 9. Introduction to SymPy

Additional Material
Pretty Printing

SymPy expressions, especially complicated ones, can be hard to read. Calling sy.init_printing()
changes the way that certain expressions are displayed to be more readable; in a Jupyter Notebook,
the rendering is done with LATEX, as displayed below. Furthermore, the function sy.latex() converts
an expression into actual LATEX code for use in other settings.

Limits

Limits can be expressed, similar to derivatives or integrals, with sy.Limit(). Alternatively, sy.
limit() (lowercase) evaluates a limit directly.

Define the limit of a^(1/x) as x approaches infinity.
>>> a, x = sy.symbols('a x')
>>> sy.Limit(a**(1/x), x, sy.oo)
Limit(a**(1/x), x, oo, dir='-')

Use the doit() method or sy.limit() to evaluate a limit.
>>> sy.limit((1+x)**(1/x), x, 0)
E

Evaluate a limit as x approaches 0 from the negative direction.
>>> sy.limit(1/x, x, 0, '-')
-oo

Use limits instead of the subs()method when the value to be substituted is∞ or is a singularity.

>>> expr = x / 2**x
>>> expr.subs(x, sy.oo)
nan
>>> sy.limit(expr, x, sy.oo)
0

Refer to http://docs.sympy.org/latest/tutorial/calculus.html for SymPy’s official doc-
umentation on calculus operations.

http://docs.sympy.org/latest/tutorial/calculus.html

141

Numerical Integration

Many integrals cannot be solved analytically. As an alternative to the doit() method, the as_sum()
method approximates the integral with a summation. This method accepts the number of terms
to use and a string indicating which approximation rule to use ("left", "right", "midpoint", or
"trapezoid").

>>> x = sy.symbols('x')

Try integrating e^(x^2) from 0 to pi.
>>> I = sy.Integral(sy.exp(x**2), (x,0,sy.pi))
>>> I.doit()
sqrt(pi)*erfi(pi)/2 # The result is not very helpful.

Instead, approximate the integral with a sum.
>>> I.as_sum(10, 'left').evalf()
1162.85031639195

See http://docs.sympy.org/latest/modules/integrals/integrals.html for more docu-
mentation on integration with SymPy.

Differential Equations

SymPy can be used to solve both ordinary and partial differential equations. The documentation for
working with PDE functions is at http://docs.sympy.org/dev/modules/solvers/pde.html

The general form of a first-order differential equation is dx
dt = f(x(t), t). To represent the

unknown function x(t), use sy.Function(). Just as sy.solve() is used to solve an expression for
a given variable, sy.dsolve() solves an ODE for a particular function. When there are multiple
solutions, sy.dsolve() returns a list; when arbitrary constants are involved they are given as C1, C2,
and so on. Use sy.checkodesol() to check that a function is a solution to a differential equation.

>>> t = sy.symbols('t')
>>> x = sy.Function('x')

Solve the equation x''(t) - 2x'(t) + x(t) = sin(t).
>>> ode = x(t).diff(t, t) - 2*x(t).diff(t) + x(t) - sy.sin(t)
>>> sy.dsolve(ode, x(t))
Eq(x(t), (C1 + C2*t)*exp(t) + cos(t)/2) # C1 and C2 are arbitrary constants.

Since there are many types of ODEs, sy.dsolve() may also take a hint indicating what solving
strategy to use. See sy.ode.allhints for a list of possible hints, or use sy.classify_ode() to see
the list of hints that may apply to a particular equation.

http://docs.sympy.org/latest/modules/integrals/integrals.html
http://docs.sympy.org/dev/modules/solvers/pde.html

142 Lab 9. Introduction to SymPy

10 Data Visualization

Lab Objective: This lab demonstrates how to communicate information through clean, concise,
and honest data visualization. We recommend completing the exercises in a Jupyter Notebook.

The Importance of Visualizations
Visualizations of data can reveal insights that are not immediately obvious from simple statistics.
The data set in the following exercise is known as Anscombe’s quartet. It is famous for demonstrating
the importance of data visualization.

Problem 1. The file anscombe.npy contains the quartet of data points shown in the table
below. For each section of the quartet,

• Plot the data as a scatter plot on the box [0, 20]× [0, 13].

• Use scipy.stats.linregress() to calculate the slope and intercept of the least squares
regression line for the data and its correlation coefficient (the first three return values).

• Plot the least squares regression line over the scatter plot on the domain x ∈ [0, 20].

• Report the mean and variance in x and y, the slope and intercept of the regression line,
and the correlation coefficient. Compare these statistics to those of the other sections.

• Describe how the section is similar to the others and how it is different.

I II III IV
x y x y x y x y

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76

13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84

11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50

12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

143

144 Lab 10. Data Visualization

Improving Specific Types of Visualizations
Effective data visualizations show specific comparisons and relationships in the data. Before designing
a visualization, decide what to look for or what needs to be communicated. Then choose the visual
scheme that makes sense for the data. The following sections demonstrate how to improve commonly
used plots to communicate information visually.

Line Plots

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0
n = 0
n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7
n = 8

1
0
1

n = 0 n = 1 n = 2

1
0
1

n = 3 n = 4 n = 5

1 0 1
1
0
1

n = 6

1 0 1

n = 7

1 0 1

n = 8

Figure 10.1: Line plots can be used to visualize and compare mathematical functions. For example,
this figure shows the first nine Chebyshev polynomials in one plot (left) and small multiples (right).
Using small multiples makes comparison easy and shows how each polynomial changes as n increases.

>>> import numpy as np
>>> from matplotlib import pyplot as plt

Plot the first 9 Chebyshev polynomials in the same plot.
>>> T = np.polynomial.Chebyshev.basis
>>> x = np.linspace(-1, 1, 200)
>>> for n in range(9):
... plt.plot(x, T(n)(x), label="n = "+str(n))
...
>>> plt.axis([-1.1, 1.1, -1.1, 1.1]) # Set the window limits.
>>> plt.legend(loc="right")

A line plot connects ordered (x, y) points with straight lines, and is best for visualizing one or
two ordered arrays, such as functional outputs over an ordered domain or a sequence of values over
time. Sometimes, plotting multiple lines on the same plot helps the viewer compare two different
data sets. However, plotting several lines on top of each other makes the visualization difficult to
read, even with a legend. For example, Figure 10.1 shows the first nine Chebyshev polynomials, a
family of orthogonal polynomials that satisfies the recursive relation

T0(x) = 1, T1(x) = x, Tn+1 = 2xTn(x)− Tn−1(x).

145

The plot on the right makes comparison easier by using small multiples. Instead of using a legend,
the figure makes a separate subplot with a title for each polynomial. Adjusting the figure size and
the line thickness also makes the information easier to read.

Note

Matplotlib titles and annotations can be formatted with LATEX, a system for creating technical
documents.a To do so, use an r before the string quotation mark and surround the text with
dollar signs. For example, add the following line of code to the loop from the previous example.

... plt.title(r"$T_{}(x)$".format(n))

The format() method inserts the input n at the curly braces. The title of the sixth
subplot, instead of being “n = 5,” will then be “T5(x).”

aSee http://www.latex-project.org/ for more information.

Problem 2. The n+ 1 Bernstein basis polynomials of degree n are defined as follows:

bv,n(x) =

(
n

v

)
xv(1− x)n−v, v = 0, 1, . . . , n

Plot the first 10 Bernstein basis polynomials (n = 0, 1, 2, 3) as small multiples on the
domain [0, 1]× [0, 1]. Label the subplots for clarity, adjust tick marks and labels for simplicity,
and set the window limits of each plot to be the same. Consider arranging the subplots so that
the rows correspond with n and the columns with v.
Hint: The constant

(
n
v

)
= n!

v!(n−v)! is called the binomial coefficient and can be efficiently
computed with scipy.special.comb().

Bar Charts

Lobster ThermadorBaked BeansCrispy BaconSmoked SausageHannibal HamEggs Spam
0

5

10

15

20

0 5 10 15 20

Lobster Thermador

Baked Beans

Crispy Bacon

Smoked Sausage

Hannibal Ham

Eggs

Spam

Figure 10.2: Bar charts are used to compare quantities between categorical variables. The labels
on the vertical bar chart (left) are more difficult to read than the labels on the horizontal bar chart
(right). Although the labels can be rotated, horizontal text is much easier to read than vertical text.

http://www.latex-project.org/

146 Lab 10. Data Visualization

>>> labels = ["Lobster Thermador", "Baked Beans", "Crispy Bacon",
... "Smoked Sausage", "Hannibal Ham", "Eggs", "Spam"]
>>> values = [10, 11, 18, 19, 20, 21, 22]
>>> positions = np.arange(len(labels))

>>> plt.bar(positions, values, align="center") # Vertical bar chart.
>>> plt.xticks(positions, labels)
>>> plt.show()

>>> plt.barh(positions, values, align="center") # Horizontal bar char (better).
>>> plt.yticks(positions, labels)
>>> plt.tight_layout()
>>> plt.show()

A bar chart plots categorical data in a sequence of bars. They are best for small, discrete, one-
dimensional data sets. In Matplotlib, plt.bar() creates a vertical bar chart or plt.barh() creates
a horizontal bar chart. These functions receive the locations of each bar followed by the height of
each bar (as lists or arrays). In most situations, horizontal bar charts are preferable to vertical bar
charts because horizontal labels are easier to read than vertical labels. Data in a bar chart should
also be sorted in a logical way, such as alphabetically, by size, or by importance.

Histograms

3 2 1 0 1 2 3
0

50

100

150

200

3 2 1 0 1 2 3
0

10

20

30

40

50

60

70

Figure 10.3: Histograms are used to show the distribution of one-dimensional data. Experimenting
with different values for the bin size is important when plotting a histogram. Using only 10 bins
(left) doesn’t give a good sense for how the randomly generated data is distributed. However, using
35 bins (right) reveals the shape of a normal distribution.

>>> data = np.random.normal(size=10000)
>>> fig, ax = plt.subplots(1, 2)
>>> ax[0].hist(data, bins=10)
>>> ax[1].hist(data, bins=35)

147

A histogram partitions an interval into a number of bins and counts the number of values
that fall into each bin. Histograms are ideal for visualizing how unordered data in a single array
is distributed over an interval. For example, if data are drawn from a probability distribution, a
histogram approximates the distribution’s probability density function. Use plt.hist() to create
a histogram. The arguments bins and range specify the number of bins to draw and over what
domain. A histogram with too few or too many bins will not give a clear view of the distribution.

Scatter Plots

0 5 10 15 20 25 30 35
4

3

2

1

0

1

2

3

0 5 10 15 20 25 30 35
10

5

0

5

10

Figure 10.4: Scatter plots show correlation between variables by plotting markers at coordinate
points. The figure above displays randomly perturbed data visualized using two scatter plots with
alpha=.5 and edgecolor='none'. The default (left) makes it harder to see correlation and pattern
whereas making the axes equal better reveals the oscillatory behavior in the perturbed sine wave.

>>> np.random.seed(0)
>>> x = np.linspace(0,10*np.pi,200) + np.random.normal(size=200)
>>> y = np.sin(x) + np.random.normal(size=200)

>>> plt.scatter(x, y, alpha=.5, edgecolor='none')
>>> plt.show()

>>> plt.scatter(x, y, alpha=.5, edgecolor='none')
>>> plt.axis('equal')
>>> plt.show()

A scatter plot draws (x, y) points without connecting them. Scatter plots are best for displaying
data sets without a natural order, or where each point is a distinct, individual instance. They are
frequently used to show correlation between variables in a data set. Use plt.scatter() to create a
scatter plot.1

Similar data points in a scatter plot may overlap, as in Figure 10.4. Specifying an alpha value
reveals overlapping data by making the markers transparent (see Figure 10.5 for an example). The
keyword alpha accepts values between 0 (completely transparent) and 1 (completely opaque). When
plotting lots of overlapping points, the outlines on the markers can make the visualization look
cluttered. Setting the edgecolor keyword to zero removes the outline and improves the visualization.

1Scatter plots can also be drawn with with plt.plot() by specifying a point marker such as '.', ',', 'o', or '+'.
The keywords s and c can be used to change the marker size and marker color, respectively.

148 Lab 10. Data Visualization

Problem 3. The file MLB.npy contains measurements from over 1,000 recent Major League
Baseball players, compiled by UCLA.a Each row in the array represents a player; the columns
are the player’s height (in inches), weight (in pounds), and age (in years), in that order.

Create several visualizations to show the correlations between height, weight, and age in
the MLB data set. Use at least one scatter plot. Adjust the marker size, plot a regression line,
change the window limits, and use small multiples where appropriate.

aSee http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_MLB_HeightsWeights.

Problem 4. The file earthquakes.npy contains data from over 17,000 earthquakes between
2000 and 2010 that were at least a 5 on the Richter scale.a Each row in the array represents an
earthquake; the columns are the earthquake’s date (as a fraction of the year), magnitude (on
the Richter scale), longitude, and latitude, in that order.

Because each earthquake is a distinct event, a good way to start visualizing this data
might be a scatter plot of the years versus the magnitudes of each earthquake.

>>> year, magnitude, longitude, latitude = np.load("earthquakes.npy").T
>>> plt.plot(year, magnitude, '.')
>>> plt.xlabel("Year")
>>> plt.ylabel("Magnitude")

2000 2002 2004 2006 2008 2010
Year

5

6

7

8

9

M
ag

ni
tu

de

Unfortunately, this plot communicates very little information because the data is so clut-
tered. Describe the data with at least two better visualizations, including line plots, scatter
plots, and histograms as appropriate. Your plots should answer the following questions:

1. How many earthquakes happened every year?

2. How often do stronger earthquakes happen compared to weaker ones?

http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_MLB_HeightsWeights

149

3. Where do earthquakes happen? Where do the strongest earthquakes happen?
(Hint: Use plt.axis("equal") or ax.set_aspect("equal") to fix the aspect ratio,
which may improve comparisons between longitude and latitude.)

aSee http://earthquake.usgs.gov/earthquakes/search/.

Hexbins

5 0 5 10

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

5 0 5 10

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

Figure 10.5: Hexbins can be used instead of using a three-dimensional histogram to show the distribu-
tion of two-dimensional data. Choosing the right gridsize will give a better picture of the distribution.
The figure above shows random data plotted as hexbins with a gridsize of 10 (left) and 25 (right).
Hexbins use color to show height via a colormap and both histograms above use the 'inferno'
colormap.

Add random draws from various distributions in two dimensions.
>>> a = np.random.exponential(size=1000) + np.random.normal(size=1000) + 5
>>> b = np.random.exponential(size=1000) + 2*np.random.normal(size=1000)
>>> x = np.hstack((a, b, 2*np.random.normal(size=1000)))
>>> y = np.hstack((b, a, np.random.normal(size=1000)))

Plot the samples with hexbins of gridsize 10 and 25.
>>> fig, axes = plt.subplots(1, 2)
>>> window = [x.min(), x.max(), y.min(), y.max()]
>>> for ax, size in zip(axes, [10, 25]):
... ax.hexbin(x, y, gridsize=size, cmap='inferno')
... ax.axis(window)
... ax.set_aspect("equal")
...
>>> plt.show()

http://earthquake.usgs.gov/earthquakes/search/

150 Lab 10. Data Visualization

A hexbin is a way of representing the frequency of ocurrances in a two-dimensional plane. Similar
to a histogram, which sorts one-dimensional data into bins, a hexbin sorts two-dimensional data into
hexagonal bins arranged in a grid and uses color instead of height to show frequency. Creating
an effective hexbin relies on choosing an appropriate gridsize and colormap. The colormap is a
function that assigns data points to an ordering of colors. Use plt.hexbin() to create a hexbin and
use the cmap keyword to specify the colormap.

Heat Maps and Contour Plots

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

0.0

1.5

3.0

4.5

6.0

7.5

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.6

0.0

1.6

3.2

4.8

6.4

8.0

Figure 10.6: Heat maps visualize three-dimensional functions or surfaces by using color to represent
the value in one dimension. With continuous data, it can be hard to identify regions of interest.
Contour plots solve this problem by visualizing the level curves of the surface. Top left: heat map.
Top right: contour plot. Bottom left: heat map. Bottom right: contours plotted on a heat map.

Construct a 2-D domain with np.meshgrid() and calculate f on the domain.
>>> x = np.linspace(-1.5, 1.5, 200)
>>> X, Y = np.meshgrid(x, x)
>>> Z = Y**2 - X**3 + X**2

Plot f using a heat map, a contour map, and a filled contour map.
>>> fig, ax = plt.subplots(2,2)
>>> ax[0,0].pcolormesh(X, Y, Z, cmap="viridis") # Heat map.
>>> ax[0,1].contour(X, Y, Z, 6, cmap="viridis") # Contour map.
>>> ax[1,0].contourf(X, Y, Z, 12, cmap="magma") # Filled contour map.

151

Plot specific level curves and a heat map with a colorbar.
>>> ax[1,1].contour(X, Y, Z, [-1, -.25, 0, .25, 1, 4], colors="white")
>>> cax = ax[1,1].pcolormesh(X, Y, Z, cmap="magma")
>>> fig.colorbar(cax, ax=ax[1,1])

>>> plt.show()

Let f : R2 → R be a scalar-valued function on a 2-dimensional domain. A heat map of f
assigns a color to each (x, y) point in the domain based on the value of f(x, y), while a contour plot
is a drawing of the level curves of f . The level curve corresponding to the constant c is the set
{(x, y) | c = f(x, y)}. A filled contour plot colors in the sections between the level curves and is a
discretized version of a heat map. The values of c corresponding to the level curves are automatically
chosen to be evenly spaced over the range of values of f on the domain. However, it is sometimes
better to strategically specify the curves by providing a list of c constants.

Consider the function f(x, y) = y2 − x3 + x2 on the domain [− 3
2 ,

3
2] × [− 3

2 ,
3
2]. A heat map of

f reveals that it has a large basin around the origin. Since f(0, 0) = 0, choosing several level curves
close to 0 more closely describes the topography of the basin. The fourth subplot in 10.6 uses the
curves with c = −1, − 1

4 , 0,
1
4 , 1, and 4.

When plotting hexbins, heat maps, and contour plots, be sure to choose a colormap that best
represents the data. Avoid using spectral or rainbow colormaps like "jet" because they are not
perceptually uniform, meaning that the rate of change in color is not constant. Because of this, data
points may appear to be closer together or farther apart than they actually are. This creates visual
false positives or false negatives in the visualization and can affect the interpretation of the data.
As a default, we recommend using the sequential colormaps "viridis" or "inferno" because they
are designed to be perceptually uniform and colorblind friendly. For the complete list of Matplotlib
color maps, see http://matplotlib.org/examples/color/colormaps_reference.html.

Problem 5. The Rosenbrock function is defined as

f(x, y) = (1− x)2 + 100(y − x2)2.

The minimum value of f is 0, which occurs at the point (1, 1) at the bottom of a steep, banana-
shaped valley of the function.

Use a heat map and a contour plot to visualize the Rosenbrock function. Also plot the
minimizer (1, 1). Use a different sequential colormap for each visualization.

Best Practices
Good scientific visualizations make comparison easy and clear. The eye is very good at detecting
variation in one dimension and poor in two or more dimensions. For example, consider Figure 10.7.
Despite the difficulty, most people can probably guess which slice of a pie chart is the largest or
smallest. However, it’s almost impossible to confidently answer the question by how much? The bar
charts may not be as aesthetically pleasing but they make it much easier to precisely compare the
data. Avoid using pie charts as well as other visualizations that make accurate comparison difficult,
such as radar charts, bubble charts, and stacked bar charts.

http://matplotlib.org/examples/color/colormaps_reference.html

152 Lab 10. Data Visualization

0

1

2

3
4

0 5 10 15 20 25

0

1

2

3

4

0

1

2

3

4

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0

1

2

3

4

0
1

2

3

4

0 5 10 15 20 25

0

1

2

3

4

Figure 10.7: The pie charts on the left may be more colorful but it’s extremely difficult to quantify
the difference between each slice. Instead, the horizontal bar charts on the right make it very easy
to see the difference between each variable.

No visualization perfectly represents data, but some are better than others. Finding the best
visualization for a data set is an iterative process. Experiment with different visualizations by ad-
justing their parameters: color, scale, size, shape, position, and length. It may be necessary to use a
data transformation or visualize various subsets of the data. As you iterate, keep in mind the saying
attributed to George Box: “All models are wrong, but some are useful.” Do whatever is needed to
make the visualization useful and effective.

153

1972 1974 1976 1978 1980 1982
year

0

50

100

150

200

250

300

ex
pe

nd
itu

re
 (i

n
m

illi
on

s)

Total House and Senate Campaign Expenditures

Figure 10.8: Chartjunk refers to anything that does not communicate data. In the image on the
left, the cartoon monster distorts the bar chart and manipulates the feelings of the viewer to think
negatively about the results. The image on the right shows the same data without chartjunk, making
it simple and very easy to interpret the data objectively.

Good visualizations are as simple as possible and no simpler. Edward Tufte coined the term
chartjunk to mean anything (pictures, icons, colors, and text) that does not represent data or is
distracting. Though chartjunk might appear to make data graphics more memorable than plain
visualizations, it is more important to be clear and precise in order to prevent misin-
terpretation. The physicist Richard Feynman said, “For a successful technology, reality must take
precedence over public relations, for Nature cannot be fooled.” Remove chartjunk and anything that
prevents the viewer from objectively interpreting the data.

2006 2007 2008 2009 2010 2011 2012 2013
year

250000

500000

750000

1000000

1250000

1500000

1750000

2000000

nu
m

be
r o

f p
ro

ce
du

re
s

Abortions vs Cancer Screenings & Prevention Services (CSPS)

CSPS
Abortions

source: Americans United for Life

Figure 10.9: The chart on the left is an example of a dishonest graphic shown at a United States
congressional hearing in 2015. The chart on the right shows a more accurate representation of the
data by showing the y-axis and revealing the missing data from 2008. Source: PolitiFact.

154 Lab 10. Data Visualization

Visualizations should be honest. Figure 10.9 shows how visualizations can be dishonest. The
misleading graphic on the left was used as evidence in a United States congressional hearing in 2015.
With the y-axis completely removed, it is easy to miss that each line is shown on a different y-axis
even though they are measured in the same units. Furthermore, the chart fails to indicate that data
is missing from the year 2008. The graphic on the right shows a more accurate representation of the
data.2

Never use data visualizations to deceive or manipulate. Always present information on who
created it, where the data came from, how it was collected, whether it was cleaned or transformed,
and whether there are conflicts of interest or possible biases present. Use specific titles and axis
labels, and include units of measure. Choose an appropriate window size and use a legend or other
annotations where appropriate.

Problem 6. The file countries.npy contains information from 20 different countries. Each
row in the array represents a different country; the columns are the 2015 population (in millions
of people), the 2015 GDP (in billions of US dollars), the average male height (in centimeters),
and the average female height (in centimeters), in that order.a

The countries corresponding are listed below in order.

countries = ["Austria", "Bolivia", "Brazil", "China",
"Finland", "Germany", "Hungary", "India",
"Japan", "North Korea", "Montenegro", "Norway",
"Peru", "South Korea", "Sri Lanka", "Switzerland",
"Turkey", "United Kingdom", "United States", "Vietnam"]

Visualize this data set with at least four plots, using at least one scatter plot, one his-
togram, and one bar chart. List the major insights that your visualizations reveal.
(Hint: consider using np.argsort() and fancy indexing to sort the data for the bar chart.)

aSee https://en.wikipedia.org/wiki/List_of_countries_by_GDP_(nominal),
https://en.wikipedia.org/wiki/List_of_countries_and_dependencies_by_population, and
http://www.averageheight.co/.

For more about data visualization, we recommend the following books and websites.

• How to Lie with Statistics by Darrell Huff (1954).

• The Visual Display of Quantitative Information by Edward Tufte (2nd edition).

• Visual Explanations by Edward Tufte.

• Envisioning Information by Edward Tufte.

• Beautiful Evidence by Edward Tufte.

• The Functional Art by Alberto Cairo.

• Visualization Analysis and Design by Tamara Munzner.

• Designing New Default Colormaps: https://bids.github.io/colormap/.

2For more information about this graphic, visit http://www.politifact.com/truth-o-meter/statements/2015/
oct/01/jason-chaffetz/chart-shown-planned-parenthood-hearing-misleading-/.

https://en.wikipedia.org/wiki/List_of_countries_by_GDP_(nominal)
https://en.wikipedia.org/wiki/List_of_countries_and_dependencies_by_population
http://www.averageheight.co/
https://bids.github.io/colormap/
http://www.politifact.com/truth-o-meter/statements/2015/oct/01/jason-chaffetz/chart-shown-planned-parenthood-hearing-misleading-/
http://www.politifact.com/truth-o-meter/statements/2015/oct/01/jason-chaffetz/chart-shown-planned-parenthood-hearing-misleading-/

Part II

Appendices

155

A Getting Started

The individual mandatory assignments (also referred to as “labs”) in the second part of DM587 aim
to introduce applications of Linear Algebra and to train your Python programming skills. There will
be weekly programming tasks for which you have to submit a solution.

Submitting Assignments
Labs

Every lab has a corresponding specifications file with some code to get you started and to make your
submission compatible with automated test drivers. The template code will be provided via IMADA
Git Server at https://git.imada.sdu.dk. How to proceed in detail will be described below.

To submit a lab, modify the provided specifications file and use git to submit your solu-
tion (discussed in the next section). The submissions will be automatically graded. The first
assignment, asg0, will not be graded and is just used to introduce you to the procedure of how
you should submit your solutions and how your solution is graded. It has the specifications file
asg0-onlytesting/onlytesting.py. To complete that assignment, provide your implementation
in the file asg0-onlytesting/asg0.py and submit it via git. After grading, you will be able to
get access to a file called asg0-onlytesting/grade.txt with your score and some feedback. Each
assignment will have a formal deadline. The final grade of each assignment will be based on your
files as they are at the exact time of the deadline of the assignment.

Achtung!

Do not move or rename the lab folders or the enclosed specifications files; if you do, the test
drivers will not be able to find your assignment. Do not edit the file grade.txt. This file is
overwritten when you pull with git from the remote server and must stay unchanged.

157

https://git.imada.sdu.dk

158 Appendix A. Getting Started

Setup

Achtung!

We strongly recommend using a Unix-based operating system (Mac or Linux or Windows
Subsystem for Linux) for the labs. Unix has a true bash terminal, works well with git and
python, and is the preferred platform for computational and data scientists. It is possible to do
this curriculum with Windows, but expect some road bumps along the way. We will ensure that
all the exercises can be solved in the IMADA Virtual Computer Lab. You can use your own
environment, but you should not expect that we are able to answer your environment specific
questions.

Code has to be submitted using git.

Setup With Git

Git is a program that manages updates between an online code repository and the copies of the
repository, called clones, stored locally on computers. Git is installed in the IMADA Virtual Com-
puter Lab. The instructions given below in this document should be enough for the needs in this
course. The tutorials linked below will provide much more information than needed in this course.
Nevertheless, git is an industry-standard collaboration tool, and being able to use it efficiently is an
asset.

If you decide to use your own computer, and git is not already installed on your computer,
you can download it at http://git-scm.com/downloads (or use the installation procedure of your
specific system). If you have never used git, you might want to read a few of the following resources.

• Official git tutorial: https://git-scm.com/docs/gittutorial

• Bitbucket git tutorials: https://www.atlassian.com/git/tutorials

• GitHub git cheat sheet: https://education.github.com/github-git-cheat-sheet.pdf

• GitLab git tutorial: https://docs.gitlab.com/ce/gitlab-basics/start-using-git.html

• Codecademy git lesson: https://www.codecademy.com/learn/learn-git

• Training video series by GitHub: https://www.youtube.com/playlist?list=PLg7.../

There are many websites for hosting online git repositories. IMADA has its own server for
hosting git repositories https://git.imada.sdu.dk. While not needed for submitting your code,
you can login to the webpage using your university account name and the same password as you use
for reading your mail or logging into blackboard. Choose as authentication source “SDU”. Via the
webpage you will always be able to see the state of your code that will be used for auto-grading.

1. Clone your existing repository.

Usually, you have to create a repository. However, we already created a repository for each
student of DM587. You will not have to create any repositories, but only clone it.

2. Connect your folder to the new repository. In a shell application (Terminal on Linux or Mac,
or Git Bash (https://gitforwindows.org/ on Windows), enter the following commands (we
will use the student with the username “username” as example, of course you have to change
this).

https://imada.sdu.dk/~jlandersen/imada/it/complab.html
http://git-scm.com/downloads
https://git-scm.com/docs/gittutorial
https://www.atlassian.com/git/tutorials
https://education.github.com/git-cheat-sheet-education.pdf
https://docs.gitlab.com/ce/gitlab-basics/start-using-git.html
https://www.codecademy.com/learn/learn-git
https://www.youtube.com/playlist?list=PLg7s6cbtAD15G8lNyoaYDuKZSKyJrgwB-
https://git.imada.sdu.dk
https://gitforwindows.org/

159

Navigate to the folder where you want to store your files
$ cd /path/to/folder # cd means 'change directory'.

Make sure you are in the right place.
$ pwd # pwd means 'print working directory'.
/path/to/folder

Clone the repository we provided

$ git clone https://git.imada.sdu.dk/DM587_2023/username-repo.git

Cloning into 'username-repo'...
Username for 'https://git.imada.sdu.dk': username
Password for 'https://username@git.imada.sdu.dk': ********
remote: Counting objects: 48, done.
remote: Compressing objects: 100% (44/44), done.
remote: Total 48 (delta 16), reused 0 (delta 0)
Unpacking objects: 100% (48/48), done.
$ ls
username-repo

$ cd username-repo
$ ls -rtl
-rw------- 1 username username 66 Oct 31 19:48 README.md
-rw------- 1 username username 134 Oct 31 19:48 Info.md
drwx------ 2 username username 4096 Oct 31 19:48 asg0-onlytesting

Record your credentials (has to be done once only).
$ git config --local user.name "Firstname Surname"
$ git config --local user.email "username@student.sdu.dk"

3. Install Python package dependencies. Some of the labs require third-party Python packages
that you might not have installed on your system. If they are missing you will see an error
message similar to

$ python test.py
Traceback (most recent call last):
File "test.py", line 1, in <module>
import matplotlib

ImportError: No module named matplotlib

You can easily install missing packages via

$ pip3 install --user matplotlib
Collecting matplotlib
Downloading https://files.pythonhosted.org/packages/b2/58/5842588←↩

fa67b45ffb451c4c98eda283c0c42b8f2c5e503e4f6d9ff3c3a63/matplotlib←↩
-3.0.1-cp35-cp35m-manylinux1_x86_64.whl (12.9MB)

160 Appendix A. Getting Started

[...]

Note, that you must have git installed in order to i.) get the data files for each lab and ii.) to
submit you solution. Git is installed in the Virtual Computer Lab — if you want to install it within
your own environment, http://git-scm.com/downloads is a good starting point.

Using Git
Git manages the history of a file system through commits, or checkpoints. Use git status to
see the files that have been changed since the last commit. These changes are then moved to the
(local) staging area (a list of files for the next commit) with git add <filename(s)>. Record the
changes in the staging area with the command git commit -m "<A brief message describing
the changes>".

All of these commands are done within a “clone” of the repository, which is stored somewhere
on a computer. This repository must be manually synchronized with the remote repository server via
two other git commands: git pull, to pull updates from the web to the computer; and git push,
to push updates from the computer to the git server.

In a nutshell, for the Labs in DM587 you usually have to modify one file only. This file first
has to be added to the staging area, then it has to be commited, and then it has to be pushed to the
remote server. In order to get the grading, you have to pull the corresponding file from the server
after we tested your solution and created the grading file.

Command Explanation
git status Display the staging area and untracked changes.
git pull Pull changes from the online repository.
git push Push changes to the online repository.
git add <filename(s)> Add a file or files to the staging area.
git commit -m "<message>" Save the changes in the staging area with a given message.

Table A.1: Most common git commands needed for DM587.

Command Explanation
git add -u Add all modified, tracked files to the staging area.
git checkout -- <filename> Revert changes to an unstaged file since the last commit.
git reset HEAD -- <filename> Remove a file from the staging area.
git diff <filename> See the changes to an unstaged file since the last commit.
git diff --cached <filename> See the changes to a staged file since the last commit.
git config --local <option> Record your credentials (user.name, user.email, etc.).

Table A.2: Some more git commands.

Note

When pulling updates with git pull origin master, your terminal may sometimes display
the following message.

http://git-scm.com/downloads

161

Merge branch 'master' of https://git.imada.sdu.dk/<name>/<repo> into ←↩
master

Please enter a commit message to explain why this merge is necessary,
especially if it merges an updated upstream into a topic branch.
#
Lines starting with '#' will be ignored, and an empty message aborts
the commit.
~
~

This means that someone else (the grading system) has pushed a commit (e.g., the file containing
your grades) that you do not yet have, while you have also made one or more commits locally
that they (the grading system) do not have. This screen, displayed in vim (https://en.
wikipedia.org/wiki/Vim_(text_editor)), is asking you to enter a message (or use the default
message) to create a merge commit that will reconcile both changes. To close this screen and
create the merge commit, type :wq and press enter.

Example Work Session

Cloning and giving details on your name and email has only to be done once. The below work session
assumes this has been done already.

Short version:

$ cd ~/Desktop/Student-Materials/
$ git pull # Pull updates.

Make changes to a file (in this example onlytesting.py)

Record the changes in git.
$ git add onlytesting.py # Track changes.
$ git commit -m "Made some changes." # Commit changes.
$ git push # Push updates.

Long version:

Navigate to the clone of the repository.
$ cd ~/Desktop/Student-Materials/

Pull any updates from the online repository (such as preliminary feedback and←↩
grading), if they exist.

$ git pull

remote: Counting objects: 4, done.
remote: Compressing objects: 100% (4/4), done.
remote: Total 4 (delta 2), reused 0 (delta 0)

https://en.wikipedia.org/wiki/Vim_(text_editor)
https://en.wikipedia.org/wiki/Vim_(text_editor)

162 Appendix A. Getting Started

Unpacking objects: 100% (4/4), done.
From https://git.imada.sdu.dk/DM587-2023/username-repo

6dde06d..e24cee5 master -> origin/master
Updating 6dde06d..e24cee5
Fast-forward
asg0-onlytesting/grade.txt | 33 +++++----------------------------
1 file changed, 5 insertions(+), 28 deletions(-)

It seems someone graded your solution, and you would find the result in the ←↩
file asg0-onlytesting/grade.txt

Work on the labs. For example, modify asg0-onlytesting/onlytesting.py

$ git status
On branch master
Your branch is up to date with 'origin/master'.

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: asg0-onlytesting/onlytesting.py

no changes added to commit (use "git add" and/or "git commit -a")

$ git add asg0-onlytesting/onlytesting.py
$ git status
On branch master
Your branch is up to date with 'origin/master'.

Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

modified: asg0-onlytesting/onlytesting.py

Commit the changes to the repository with an informative message.
$ git commit -m "Made some changes"
[master 72a5ab3] Made some changes
1 file changed, 1 insertion(+)
[master fed9b34] Made some changes
1 file changed, 10 insertion(+) 1 deletion(-)

Push the changes to the online repository.
$ git push
Enumerating objects: 7, done.
Counting objects: 100% (7/7), done.
Delta compression using up to 8 threads
Compressing objects: 100% (4/4), done.
Writing objects: 100% (4/4), 373 bytes | 373.00 KiB/s, done.

163

Total 4 (delta 2), reused 0 (delta 0)
To https://git.imada.sdu.dk/DM587-2023/username-repo.git

e24cee5..72a5ab3 master -> master

The changes have been saved and the online repository updated.
$ git status
On branch master
Your branch is up to date with 'origin/master'.

nothing to commit, working tree clean

164 Appendix A. Getting Started

B Installing and
Managing Python

Lab Objective: One of the great advantages of Python is its lack of overhead: it is relatively easy
to download, install, start up, and execute. This appendix introduces tools for installing and updating
specific packages and gives an overview of possible environments for working efficiently in Python.

Installing Python

Achtung!

This curriculum uses Python 3.8.10, which is the default for Ubuntu 20.04. With the wrong
version of Python, some example code within the labs may not execute as intended or result in
an error. Also the virtual Computer Lab has installed Python 3.8.10 (via python3).a

aBackward compatibility should be granted while if you use some of the new features of the latest versions
of Python then you might get some errors in the earlier versions. In this latter case, you can try to resolve the
issue by importing from __future__.

Note

While Mac and Linux computers come with a built-in bash terminal, Windows computers do
not. Windows does come with Powershell, a terminal-like application, but some commands in
Powershell are different than their bash analogs, and some bash commands are missing from
Powershell altogether. There are two good alternatives to the bash terminal for Windows:

• Windows subsystem for linux: docs.microsoft.com/en-us/windows/wsl/.

• Git bash: https://gitforwindows.org/.

165

https://imada.sdu.dk/~jlandersen/imada/it/complab.html#imada-comp-lab
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://gitforwindows.org/

166 Appendix B. Installing and Managing Python

The Command Prompt in Windows is a shell but based on DOS rather than Unix. We will
use the Bash shell. After the installation of the Windows subsystem for Linux there will be a Bash
on Ubuntu on Windows program that will provide a bash shell. From the shell, the Windows file
system is located at ‘/mnt/c‘ in the Bash shell environment. If one wants to use Windows tools to
edit files (for example with VS Code or Atom), then one must work in the Windows directories. For
example:

mkdir /mnt/c/Users/username/Desktop/DM587
cd /mnt/c/Users/username/Desktop/DM587

If one really wants to know where the Linux files are from Windows, here there is some infor-
mation.

Once the Windows subsystem for linux is installed, one can proceed using the shell as under
Linux. For example the installation of Python 3.8.10 can be done via apt-get.

In all operating systems, to make sure that you use Python 3 you are reccomended to call the
program with the executable python3. For example to execute the script of the first (not graded)
assignment:

$ python3 asg0-onlytesting/onlytesting.py

Managing Packages
A Python package manager is a tool for installing or updating Python packages, which involves
downloading the right source code files, placing those files in the correct location on the machine,
and linking the files to the Python interpreter. Never try to install a Python package without using
a package manager (see https://xkcd.com/349/).

Pip

The most generic Python package manager is called pip. If not present you can install it via:

$ sudo apt-get install python3-pip

Command Description
pip3 install package-name Install the specified package.
pip3 install --upgrade package-name Update the specified package.
pip3 freeze Display the version number on all installed packages.
pip3 --help Display the documentation for pip.

See https://pip.pypa.io/en/stable/user_guide/ for more complete documentation. In the
IMADA Computer Lab all packages that you need in the course should be already installed. If you
need to install packages via pip you have to do it in your local directory adding the flag --user to
the installation command. For example:

$ pip3 install matplotlib --user

https://code.visualstudio.com/
https://atom.io/
https://www.howtogeek.com/261383/how-to-access-your-ubuntu-bash-files-in-windows-and-your-windows-system-drive-in-bash/
https://www.howtogeek.com/261383/how-to-access-your-ubuntu-bash-files-in-windows-and-your-windows-system-drive-in-bash/
https://xkcd.com/349/
https://pip.pypa.io/en/stable/user_guide/

167

Workflows
There are several different ways to write and execute programs in Python. Try a variety of workflows
to find what works best for you.

Text Editor + Terminal

The most basic way of developing in Python is to write code in a text editor, then run it using either
the Python or IPython interpreter in the terminal.

There are many different text editors available for code development. Many text editors are
designed specifically for computer programming which contain features such as syntax highlighting
and error detection, and are highly customizable. Try installing and using some of the popular text
editors listed below.

• Atom: https://atom.io/

• Sublime Text: https://www.sublimetext.com/

• Vim: https://www.vim.org/

• Emacs: https://www.gnu.org/software/emacs/

Once Python code has been written in a text editor and saved to a file, that file can be executed
in the terminal or command line.

$ ls # List the files in the current directory.
hello_world.py
$ cat hello_world.py # Print the contents of the file to the terminal.
print("hello, world!")
$ python3 hello_world.py # Execute the file.
hello, world!

Alternatively, start IPython and run the file.
$ ipython3
IPython 7.9.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: %run hello_world.py
hello, world!

IPython is an enhanced version of Python that is more user-friendly and interactive. It has
many features that cater to productivity such as tab completion and object introspection.

Jupyter Notebook

The Jupyter Notebook (previously known as IPython Notebook) is a browser-based interface for
Python. You can install it via pip. It has an interface similar to the IPython interpreter, except that
input is stored in cells and can be modified and re-evaluated as desired.
See https://github.com/jupyter/jupyter/wiki/ for some examples.

To begin using Jupyter Notebook, run the command jupyter notebook in the terminal. This
will open your file system in a web browser in the Jupyter framework. To create a Jupyter Notebook,
click the New drop down menu and choose Python 3 under the Notebooks heading. A new tab
will open with a new Jupyter Notebook.

https://atom.io/
https://www.sublimetext.com/
https://www.vim.org/
https://www.gnu.org/software/emacs/
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks

168 Appendix B. Installing and Managing Python

Jupyter Notebooks differ from other forms of Python development in that notebook files contain
not only the raw Python code, but also formatting information. As such, Juptyer Notebook files
cannot be run in any other development environment. They also have the file extension .ipynb
rather than the standard Python extension .py.

Jupyter Notebooks also support Markdown—a simple text formatting language—and LATEX,
and can embedded images, sound clips, videos, and more. This makes Jupyter Notebook the ideal
platform for presenting code.

As an alternative to the procedure described above that requires a browser to work with the
notebooks, VS Code and Spyder (see below) have integrations with Jupyter.

Integrated Development Environments

An integrated development environment (IDEs) is a program that provides a comprehensive environ-
ment with the tools necessary for development, all combined into a single application. Most IDEs
have many tightly integrated tools that are easily accessible, but come with more overhead than a
plain text editor. Consider trying out each of the following IDEs.

• VS Code: https://code.visualstudio.com/. VS Code integration for Jupyter notebooks.
Try opening a notebook file, eg, code mynotebook.ipynb.

• JupyterLab: http://jupyterlab.readthedocs.io/en/stable/

• PyCharm: https://www.jetbrains.com/pycharm/

• Spyder: (an IDE similar to Matlab and RStudio) https://www.spyder-ide.org/, or to
avoid the Anaconda installation: https://github.com/spyder-ide. Spyder integration with
Jupyter notebooks.

• Eclipse with PyDev: http://www.eclipse.org/, https://www.pydev.org/

See https://realpython.com/python-ides-code-editors-guide/ for a good overview of these
(and other) workflow tools.

https://code.visualstudio.com/
https://code.visualstudio.com/docs/python/jupyter-support
http://jupyterlab.readthedocs.io/en/stable/
https://www.jetbrains.com/pycharm/
https://www.spyder-ide.org/
https://github.com/spyder-ide
https://github.com/spyder-ide/spyder-notebook
https://github.com/spyder-ide/spyder-notebook
http://www.eclipse.org/
https://www.pydev.org/
https://realpython.com/python-ides-code-editors-guide/

C NumPy Visual Guide

Lab Objective: NumPy operations can be difficult to visualize, but the concepts are straightforward.
This appendix provides visual demonstrations of how NumPy arrays are used with slicing syntax,
stacking, broadcasting, and axis-specific operations. Though these visualizations are for 1- or 2-
dimensional arrays, the concepts can be extended to n-dimensional arrays.

Data Access
The entries of a 2-D array are the rows of the matrix (as 1-D arrays). To access a single entry, enter
the row index, a comma, and the column index. Remember that indexing begins with 0.

A[0] =

× × × × ×
× × × × ×
× × × × ×
× × × × ×

 A[2,1] =

× × × × ×
× × × × ×
× × × × ×
× × × × ×

Slicing
A lone colon extracts an entire row or column from a 2-D array. The syntax [a:b] can be read as
“the ath entry up to (but not including) the bth entry.” Similarly, [a:] means “the ath entry to the
end” and [:b] means “everything up to (but not including) the bth entry.”

A[1] = A[1,:] =

× × × × ×
× × × × ×
× × × × ×
× × × × ×

 A[:,2] =

× × × × ×
× × × × ×
× × × × ×
× × × × ×

A[1:,:2] =

× × × × ×
× × × × ×
× × × × ×
× × × × ×

 A[1:-1,1:-1] =

× × × × ×
× × × × ×
× × × × ×
× × × × ×

169

170 Appendix C. NumPy Visual Guide

Stacking
np.hstack() stacks sequence of arrays horizontally and np.vstack() stacks a sequence of arrays
vertically.

A =

 × × ×
× × ×
× × ×

 B =

 ∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

np.hstack((A,B,A)) =

 × × × ∗ ∗ ∗ × × ×
× × × ∗ ∗ ∗ × × ×
× × × ∗ ∗ ∗ × × ×

np.vstack((A,B,A)) =

× × ×
× × ×
× × ×
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
× × ×
× × ×
× × ×

Because 1-D arrays are flat, np.hstack() concatenates 1-D arrays and np.vstack() stacks them
vertically. To make several 1-D arrays into the columns of a 2-D array, use np.column_stack().

x =
[
× × × ×

]
y =

[
∗ ∗ ∗ ∗

]

np.hstack((x,y,x)) =
[
× × × × ∗ ∗ ∗ ∗ × × × ×

]

np.vstack((x,y,x)) =

 × × × ×
∗ ∗ ∗ ∗
× × × ×

 np.column_stack((x,y,x)) =

× ∗ ×
× ∗ ×
× ∗ ×
× ∗ ×

The functions np.concatenate() and np.stack() are more general versions of np.hstack() and
np.vstack(), and np.row_stack() is an alias for np.vstack().

Broadcasting
NumPy automatically aligns arrays for component-wise operations whenever possible. See http:
//docs.scipy.org/doc/numpy/user/basics.broadcasting.html for more in-depth examples and
broadcasting rules.

http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html

171

A =

 1 2 3

1 2 3

1 2 3

 x =
[
10 20 30

]

A + x =

 1 2 3

1 2 3

1 2 3

+[]
10 20 30

=

 11 22 33

11 22 33

11 22 33

A + x.reshape((1,-1)) =

 1 2 3

1 2 3

1 2 3

+

 10

20

30

 =

 11 12 13

21 22 23

31 32 33

Operations along an Axis
Most array methods have an axis argument that allows an operation to be done along a given axis.
To compute the sum of each column, use axis=0; to compute the sum of each row, use axis=1.

A =

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

A.sum(axis=0) =

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

 =
[
4 8 12 16

]

A.sum(axis=1) =

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

 =
[
10 10 10 10

]

	Preface
	to 20ptILabs
	Introduction to Python
	The Standard Library
	Object-oriented Programming
	Introduction to NumPy
	Introduction to Matplotlib
	Exceptions and File Input/Output
	Unit Testing
	Profiling
	Introduction to SymPy
	Data Visualization

	to 20ptIIAppendices
	Getting Started
	Installing and Managing Python
	NumPy Visual Guide

